Абстрактная функция mod принемает в класическом понимании два параметра:
ДелимоеДелительРезультатом этой функции будет не отприцательный остаток целочисленного деления этих чисел.
Что бы понять как работает функция, её можно представить следующим алгоритмом написанном на псевдокоде:
function mod (integer numerator, integer denumerator){ integer wholeQuotient = numerator / denumerator; integer remainder = numerator - wholeQuotient; integer returnValue = 0; if (0 < remainder) { returnValue = remainder; } return returnValue;}Описание алгоритма (номера являются номерами строк псевдокода выше):
1. Функция получает на вход два целых числа - делимое и делитель
3. Вычесляется целове частное
4. Вычисляется остаток от деления
6. Декларируется переменная что будет хранить возращяемое значение функции, по умолчанию это 0.
8. Производиться проверка, если остаток от деления не равен нулю, то:
10. Возращяемому значению функции присваевается значени остатка
13. Возращается вычисленное значение функции
Так же прикреплена диаграма алгоритма к ответу, далее легенда диаграмы:
Овалы - начало и конец алгоритмаТрапеции - ввод и вывод информацииКвадраты - выполнение неких вычеслений либо операцийРомбы - условияза отметку "лучший ответ", а также нажатую кнопочку " ":
На ответеВ моем аккаунтеP.S.
Я описал возможный алгоритм работы функции mod, точно так же может быть реализация пошагового вычитания делителя из делимого до того момента пока делимое не станет больше делителя. Вариантов реализации может быть большое кол-во.
В случаи когда вам нужно посчитать все эти примеры, проще не решать по какому-то конкретному алгоритму, а просто делить в столбик до того момента пока у вас не останется остаток меньше делителя (но это справедливо только в отношении больших чисел, для примеров что есть у вас можно посчитать и устно).
2 mod 5 = 2 (2 по тому что мы пытаемся разделить 2 на 5, 5 более чем 2, следовательно целочисленно разделить невозможно и результат будет тот же что и делимое)2 mod 8 = 2 (снова делитель более делимого, следовательно остаток снова равен делимому - 2)2 mod 10 = 2 (такая же ситуация как и в первых двух случаях)12 mod 8 - 10 mod 8 = 4 - 2 = 2(остаток от деления 12 на 8 будет 4, а остаток деления 10 на 8 будет 2, следовательно 4 - 2 = 2)P.S.S.
Так же для оптимизации описаного мной алгоритма можно сделать условие до всяческих вычислений:
Если делитель больше чем делимое, то вернуть модуль делимого.
Объяснение:
1. а) Паша может выиграть, если S = 21, ..., 30. При меньших значениях S за один ход нельзя получить кучу, в которой больше 30 камней. Паше достаточно увеличить количество камней на 10. При S < 21 получить за один ход больше 30 камней невозможно.
1. б) Вова может выиграть первым ходом (как бы ни играл Паша), если исходно в куче будет S = 20 камней. Тогда после первого хода Паши в куче будет 21 камень или 30 камней. В обоих случаях Ваня увеличивает количество камней на 10 и выигрывает в один ход.
2. Возможные значения S: 10, 19. В этих случаях Паша, очевидно, не может выиграть первым ходом. Однако он может получить кучу из 20 камней (при S=10 он увеличивает количество камней на 10; при S=19 - добавляет 1 камень). Эта позиция разобрана в п. 1 б. В ней игрок, который будет ходить (теперь это Вова), выиграть не может, а его противник (то есть Паша) следующим ходом выиграет.
3. Возможное значение S: 18. После первого хода Паши в куче будет 19 или 28 камней. Если в куче станет 28 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом. Ситуация, когда в куче 19 камней, разобрана в п. 2. В этой ситуации игрок, который будет ходить (теперь это Вова), выигрывает своим вторым ходом.
В таблице изображено дерево возможных партий при описанной стратегии Вовы. Заключительные позиции (в них выигрывает Вова) подчёркнуты. На рисунке это же дерево изображено в графическом виде (оба изображения дерева допустимы).
3D модель – это объемное цифровое изображение необходимого объекта, как реального, так и вымышленного. Создание 3D моделей происходит в специальном программном обеспечении для 3D моделирования. Функционал таких программ может незначительно отличаться. К примеру, существуют программы, ориентированные на проектирование инженерных 3D моделей, есть ПО непосредственно для моделирования органических объектов, а также приложения для 3Д визуализации и анимации. На деле, строгой классификации программное обеспечение не подвержено, но большинство приложений содержат определенные функции, направленные на выполнение конкретных задач.
То есть:
2 mod 5 = 2
2 mod 8 = 2
2 mod 10 = 2
12 mod 8 - 10 mod 8 = 4 - 2 = 2