Надо змішали розчин калій гідроксиду масою 300 г з масовою часткою речовини 12% з розчином барій гідроксиду масою 100 г з масовою часткою речовини 8%. визначте кількість речовини гідроксид-йонів у приготованому розчині
Начальный курс химии Амфотерные гидроксиды и оксиды Амфотерность (двойственность свойств) гидроксидов и оксидов многих элементов проявляется в образовании ими двух типов солей. Например, для гидроксида и оксида алюминия: а) 2Al(OH)3 + 3SO3 = Al2(SO4)3 + 3H2O Al2О3 + 3H2SO4 = Al2(SO4)3 + 3H2O б) 2Al(OH)3 + Na2O = 2NaAlO2 + 3H2O (в расплаве) Al2О3 + 2NaOH(т) = 2NaAlO2 + H2O (в расплаве) В реакциях (а) Al(OH)3 и Al2О3 проявляют свойства оснóвных гидроксидов и оксидов, то есть они подобно щелочам реагируют с кислотами и кислотными оксидами, образуя соль, в которой алюминий является катионом Al3+. Напротив, в реакциях (б) Al(OH)3 и Al2О3 выполняют функцию кислотных гидроксидов и оксидов, образуя соль, в которой атом алюминия AlIII входит в состав аниона (кислотного остатка) AlО2−. Сам элемент алюминий проявляет в этих соединениях свойства металла и неметалла. Следовательно, алюминий - амфотерный элемент. Подобные свойства имеют также элементы А-групп - Be, Ga, Ge, Sn, Pb, Sb, Bi и другие, а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd и другие. Например, амфотерность цинка доказывают такие реакции: а) Zn(OH)2 + N2O5 = Zn(NO3)2 + H2O ZnO + 2HNO3 = Zn(NO3)2 + H2O б) Zn(OH)2 + Na2O = Na2ZnO2 + H2O ZnO + 2NaOH(т) = Na2ZnO2 + H2O Если амфотерный элемент имеет в соединениях несколько степеней окисления, то амфотерные свойства наиболее ярко проявляются для промежуточной степени окисления. Например, у хрома известны три степени окисления: +II, +III и +VI. В случае CrIII кислотные и оснóвные свойства выражены примерно в равной степени, тогда как у CrII наблюдается преобладание оснóвных свойств, а у CrVI - кислотных свойств: CrII → CrO, Cr(OH)2 → CrSO4 CrIII → Cr2O3, Cr(OH)3 → Cr2(SO4)3 или KCrO2 CrVI → CrO3, H2CrO4 → K2CrO4 Очень часто амфотерные гидроксиды элементов в степени окисления +III существуют также в мета-форме, например: AlO(OH) - метагидроксид алюминия FeO(OH) - метагидроксид железа (орто-форма "Fe(OH)3" не существует). Амфотерные гидроксиды практически нерастворимы в воде, наиболее удобный их получения - осаждение из водного раствора с слабого основания - гидрата аммиака: Al(NO3)3 + 3(NH3 · H2O) = Al(OH)3↓ + 3NH4NO3 (20 °C) Al(NO3)3 + 3(NH3 · H2O) = AlO(OH)↓ + 3NH4NO3 + H2O (80 °C) В случае использования избытка щелочей в обменной реакции подобного типа гидроксид алюминия осаждаться не будет, поскольку алюминий в силу своей амфотерности переходит в анион: Al(OH)3(т) + OH− = [Al(OH)4]− Примеры молекулярных уравнений реакций этого типа: Al(NO3)3 + 4NaOH(избыток) = Na[Al(OH)4] + 3NaNO3 ZnSO4 + 4NaOH(избыток) = Na2[Zn(OH)4] + Na2SO4 Образующиеся соли относятся к числу комплексных соединений (комплексных солей): они включают комплексные анионы [Al(OH)4]− и [Zn(OH)4]2−. Названия этих солей таковы: Na[Al(OH)4] - тетрагидроксоалюминат натрия Na2[Zn(OH)4] - тетрагидроксоцинкат натрия Продукты взаимодействия оксидов алюминия или цинка с твердой щелочью называются по-другому: NaAlO2 - диоксоалюминат(III) натрия Na2ZnO2 - диоксоцинкат(II) натрия Подкисление растворов комплексных солей этого типа приводит к разрушению комплексных анионов:
H+ H+ [Al(OH)4]− → Al(OH)3 → Al3+ Например: 2Na[Al(OH)4] + CO2 = 2Al(OH)3↓ + NaHCO3 Для многих амфотерных элементов точные формулы гидроксидов низвестны, поскольку из водного раствора вместо гидроксидов выпадают гидратированные оксиды, например MnO2 · nH2O, Sb2O5 · nH2O. Амфотерные элементы в свободном виде взаимодействуют как с типичными кислотами, так и со щелочами: 2Al + 3H2SO4(разб.) = Al2(SO4)3 + H2↑ 2Al + 6H2O + 4NaOH(конц.) = 2Na[Al(OH)4] + 3H2↑ В обеих реакциях образуются соли, причем рассматриваемый элемент в одном случае входит в состав катиона, а во втором - в состав аниона.
0 +2 +2 0
1.Fe + CuSO4(разб.) = FeSO4 + Cu↓
Восстановление:
Cu(2+) + 2e = Cu(0)1
Окисление:
Fe(0) − 2e = Fe(2+)1
0 0 +3 -2
2. 4Al(порошок) + 3O2 = 2Al2O3
Восстановление:
O2(0) + 4e = 2O(2−)3
Окисление:
Al(0) − 3e = Al(3+)4
-2 0 +4 -2
3. 2H2S + 3O2 = 2SO2 + 2H2O
Восстановление:
O2(0) + 4e = 2O(2−)___3
Окисление:
S(2−) − 6e = S(4+)2
0 +5 +2 +4
4. Cu + 4HNO3(конц.) = Cu(NO3)2 + 2NO2↑ + 2H2O
Восстановление:
N(+5) + 1e = N(+4)2
Окисление:
Cu(0) − 2e = Cu(2+)___1