Nэ(KCL) = 12*10^-3*0.02 = 0.24*10^-3 (моль*экв); nэ(AgNO3) = 0,1*0,05 = 5*10^-3 (моль*экв) Нитрат серебра находится в избытке, следовательно, ядро мицеллы - хлорид серебра, потенциалобразующие ионы - катионы серебра. Строение мицеллы: {(mAgCl)nAg+(n-x)NO3-}x+xNO3- Ядро мицеллы заряжено положительно. В соответствии с правилом Шульце-Гарди, чем выше заряд противоионов, тем ниже порог коагуляции; противоионами будут являться анионы, и порог коагуляции будет ниже для сульфата калия. 2)
Решение.
1. Записываем реакцию образования золя:
Ba(NO3)2 + K2SO4 = BaSO4 + 2KNO3.
Следовательно, ядро гранулы составляют молекулы BaSO4.2. Состав адсорбционного слоя. Так как коллоидная частица перемещается к аноду (+), то ее заряд отрицательный. Из этого следует, что потенциалопределяющими ионами являются сульфат-ионы из сульфата калия, а противоионами – ионы калия.
3. Формула гранулы: {m[BaSO4] .n(SO4)2- . (2n – x). K+}^x-
В природе существуют две разновидности твердых тел, различающиеся по своим свойствам: кристаллические и аморфные.
Кристаллические тела остаются твердыми, т.е. сохраняют приданную им форму до определенной температуры, при которой они переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении. Переход из одного состояния в другие протекает при определенной температуре плавления.
Аморфные тела при нагреве размягчаются в большом температурном интервале, становятся вязкими, а затем переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении.
Кристаллическое состояние твердого тела более стабильно, чем аморфное. В результате длительной выдержки при температуре, а в некоторых случаях при деформации, нестабильность аморфного состояния проявляется в частичной или полной кристаллизации. Пример: помутнение неорганических стекол при нагреве.
Кристаллические тела характеризуются упорядоченной структурой. В зависимости от размеров структурных составляющих и применяемых методов их выявления используют следующие понятия: тонкая структура, микро- и макроструктура.
^ Тонкая структура описывает расположение элементарных частиц в кристалле и электронов в атоме. Изучается дифракционными методами рентгенографии и электронографии. Большинство кристаллических материалов состоит из мелких кристалликов - зерен. Наблюдают такуюмикроструктуру с оптических или электронных микроскопов. Макроструктуру изучают невооруженным глазом или при небольших увеличениях, при этом выявляют раковины, поры, форму и размеры крупных кристаллов.
Закономерности расположения элементарных частиц в кристалле задаются кристаллической решеткой. Для описания элементарной ячейки кристаллической решетки используют шесть величин: три отрезка - равные расстояния до ближайших элементарных частиц по осям координат a, b, c и три угла между этими отрезками . Соотношения между этими величинами определяют форму ячейки. По форме ячеек все кристаллы подразделяются на семь систем, типы кристаллических решеток которых представлены на рис.1.
nэ(AgNO3) = 0,1*0,05 = 5*10^-3 (моль*экв)
Нитрат серебра находится в избытке, следовательно, ядро мицеллы - хлорид серебра, потенциалобразующие ионы - катионы серебра. Строение мицеллы:
{(mAgCl)nAg+(n-x)NO3-}x+xNO3-
Ядро мицеллы заряжено положительно. В соответствии с правилом Шульце-Гарди, чем выше заряд противоионов, тем ниже порог коагуляции; противоионами будут являться анионы, и порог коагуляции будет ниже для сульфата калия.
2)
Решение.
1. Записываем реакцию образования золя:
Ba(NO3)2 + K2SO4 = BaSO4 + 2KNO3.
Следовательно, ядро гранулы составляют молекулы BaSO4.2. Состав адсорбционного слоя. Так как коллоидная частица перемещается к аноду (+), то ее заряд отрицательный. Из этого следует, что потенциалопределяющими ионами являются сульфат-ионы из сульфата калия, а противоионами – ионы калия.3. Формула гранулы: {m[BaSO4] .n(SO4)2- . (2n – x). K+}^x-
4. Состав мицеллы – мицеллярная формула:
{m[BaSO4] . n(SO4)2- . (2n – x). K+}^x-. хK+.