Поскольку к-та HNO3 разб-ая, а активность элементов возрастает от As к Bi, будем считать, что обр-ся соед-ия элементов, кроме As (для него обр-ся соед-е, сод-ее As в степени окисления +5), в степени окисления +3:
1) As + HNO3 + H2O = H3AsO4 + NO, баланс:
As + 4H2O -5e- = (AsO4)3- + 8H+ | 5 | 15 | 3 |
(NO3)- + 4H+ +3e- = NO + 2H2O | 3 | | 5 |;
3As + 5(NO3)- + 2H2O = 3(AsO4)3- + 5NO + 4H+
3As + 5HNO3 + 2H2O = 3H3AsO4 + 5NO;
2) Sb + HNO3 = Sb(NO3)3 + N2O + H2O, баланс:
Sb -3e- = Sb+3 | 3 | 24 | 8 |
2(NO3)- + 10H+ +8e- = N2O + 5H2O | 8 | | 3 |;
8Sb + 6(NO3)- + 30H+ = 8Sb+3 + 3N2O + 15H2O
8Sb + 30HNO3 = 8Sb(NO3)3 + 3N2O + 15H2O;
3) Bi + HNO3 = Bi(NO3)3 + N2 + H2O, баланс:
Bi -3e- = Bi+3 | 3 | 30 | 10 |
2(NO3)- + 12H+ +10e- = N2 + 6H2O | 10 | | 3 |;
10Bi + 6(NO3)- + 36H+ = 10Bi+3 + 3N2 + 18H2O
10Bi + 36HNO3 = 10Bi(NO3)3 + 3N2 + 18H2O.
Объяснение:
КЛАССИФИКАЦИЯ
Искусственные волокна – продукты химическое переработки высокомолекулярных природных веществ (целлюлозы, природного каучука, белков).
Синтетические волокна – вырабатываемые из синтетических полимеров (полиамидного, полиэфирного, полиакрилонитрильного и поливинилхлоридного волокон).
Таблица. НЕКОТОРЫЕ ВАЖНЕЙШИЕ ВОЛОКНА
Волокно. Химическая формула
Исходное вещество
Хлопковое
(C6H10O5)n
Хлопок
Вискозное волокно
(C6H10O5)n
Древесина
Целлюлоза
Ацетатное
триацетатное
(C6H10O5)n – хлопковая или древесная целлюлоза
и
ангидрид уксусной кислоты
Нитрон
(полиакрилонитрильное волокно)
Акрилонитрил
Лавсан, полиэтилентерефталат
(полиэфирное волокно)
Этиленгликоль
HO-CH2CH2-OH
и
двухосновной кислоты - терефталевой
(1,4-бензолдикарбоновой)
HOOC-C6H4-COOH
Капрон (полиамидное волокно)
[-NH-(CH2)5-CO-]n
Капролактам
ЛАВСАН
Лавсан (полиэтилентерефталат) - представитель полиэфиров:
Получают реакцией поликонденсации терефталевой кислоты и этиленгликоля:
HOOC-C6H4-COOH + HO-CH2CH2-OH + HOOC-C6H4-COOH + … →
→ HOOC-C6H4-CO – O-CH2CH2-O – OC-C6H4-CO – … + nH2O
полимер-смола
В общем виде:
n HOOC-C6H4-COOH + n HO-CH2CH2-OH →
→ HO-(-CO-C6H4-CO-O-CH2CH2-O-)n-H + (n-1) H2O
Полимер пропускают через фильеры – макромолекулы вытягиваются, усиливается их ориентация:
Формование прочных волокон на основе лавсана осуществляется из расплава с последующей вытяжкой нитей при 80-120 °С.
Лавсан является линейным жесткоцепным полимером. Наличие регулярно расположенных в цепи макромолекулы полярных сложноэфирных групп
-О-СО- приводит к усилению межмолекулярных взаимодействий, придавая полимеру жесткость и высокую механическую прочность. К его достоинствам относятся также устойчивость к действию повышенных температур, света и окислителей.
Достоинства:
Прочность, износостойкость
Свето и термостойкость
Хороший диэлектрик
Устойчив к действию растворов кислот и щелочей средней концентрации
Высокая термостойкость (-70˚ до + 170˚)
Недостатки:
1. Негигроскопичен (для производства одежды используют в смеси с другими волокнами)
Применяется лавсан в производстве:
волокон и нитей для изготовления трикотажа и тканей различных типов (тафта, жоржет, креп, пике, твид, атлас, кружево, тюль, плащевые и зонтичные полотна и т.п.);
пленок, бутылей, упаковочного материала, контейнеров и др.;
транспортёрных лент, приводных ремней, канатов, парусов, рыболовных сетей и тралов, бензо- и нефтестойких шлангов, электроизоляционных и фильтровальных материалов, щёток, застёжек "молния", струн ракеток и т.п.;
хирургических нитей и материалов для имплантации в сердечно-сосудистой системе (эндопротезы клапанов сердца и кровеносных сосудов), эндопротезирования связок и сухожилий.
КАПРОН
Капрон [-NH-(CH2)5-CO-]n – представитель полиамидов.
В промышленности его получают путем полимеризации производного
ε-аминокапроновой кислоты – капролактама.
H2N-(CH2)5-CO-OH + H2N-(CH2)5-CO-OH + H2N-(CH2)5-CO-OH →
ε-аминокапроновая кислота
→ H2N-(CH2)5-CO-OH + H2N-(CH2)5-CO- … + nH2O
Процесс ведется в присутствии воды, играющей роль активатора, при температуре 240-270° С и давлении 15-20 кгс/см2 в атмосфере азота.
Достоинства:
Благодаря сильному межмолекулярному взаимодействию, обусловленному водородными связями между группами –CO-NH-, полиамиды представляют собой труднорастворимые высокоплавкие полимеры с температурой плавления 180-250°С.
Устойчивость к истиранию и деформации
Не впитывает влагу, поэтому не теряет прочности во влажном состоянии
Термоплатичен
Недостатки:
1. Малоустойчив к действию кислот
2. Малая теплостойкость тканей (нельзя гладить горячим утюгом)
Применение:
Полиамиды применяются прежде всего для получения синтетического волокна. Вследствие нерастворимости в обычных растворителях прядение ведется сухим методом из расплава с последующей вытяжкой. Хотя полиамидные волокна прочнее натурального шелка, трикотаж и ткани, изготовленные из них, значительно уступают по гигиеническим свойствам из-за недостаточной гигроскопичности полимера.
Изготовление одежды, искусственного меха, ковровых изделий, обивок.
Полиамиды используются для производства технических тканей, канатов, рыболовных сетей.
Шины с каркасом из полиамидного корда более долговечны.
Полиамиды перерабатываются в очень прочные конструкционные изделия методами литья под давлением, прессования, штамповки и выдувания
готове вакансия Ызмет збп чупа отправим мыш мырт сзди манты сау кайдасз Евгения победил красивым☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️☘️
Bi + HNO3 → Bi(NO3)2 + NO + H2O
Sb+HNO3 →H3SB04+5NO2+H2O
As + HNO3 → As(NO3)3 + NH4NO3 + H2O