Исходя из степени окисления хрома в соединениях cr2o3, k2cr2o7, cr2(so4)3 определите какое из них является только окислителем только восстановителем и какое из них может проявлять как окислительные так и востановительные свойства
Cr2[+3]O3 Хром может проявлять как окислительные, так и восстановительные свойства. (Так как он ещё может отдать до 3-ёх электронов, и принять тоже может) K2Cr2[+6]O7 Хром может проявлять только окислительные свойства. (Хром может только принять электроны, так как отдавать уже нечего) Cr2[+3](SO4)3 Хром может проявлять как окислительные, так и восстановительные свойства. (аналогично первому)
CnH2n,sp2 гибридизация В природе этот газ практически не встречается: он образуется в незначительных количествах в тканях растений и животных как промежуточный продукт обмена веществ. Попутно это — самое производимое органическое соединение в мире. Газ этилен служит сырьем для получения полиэтилена.Свойства этиленаЭтилен (другое название — этен) — химическое соединение, описываемое формулой С2H4. В природе этилен практически не встречается. Это бесцветный горючий газ со слабым запахом. Частично растворим в воде (25,6 мл в 100 мл воды при 0°C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах.Этилен является простейшим алкеном (олефином). Содержит двойную связь и поэтому относится к ненасыщенным соединениям. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном.Сырье для полиэтилена и не толькоЭтилен — самое производимое органическое соединение в мире; общее мировое производство этилена в 2005 году составило 107 миллионов тонн и продолжает расти на 4–6% в год. Источником промышленного получения этилена является пиролиз различного углеводородного сырья, например, этана, пропана, бутана, содержащихся в попутных газах нефтедобычи; из жидких углеводородов — низкооктановые фракции прямой перегонки нефти. Выход этилена – около 30%. Одновременно образуется пропилен и ряд жидких продуктов (в том числе ароматических углеводородов).При хлорировании этилена получается 1,2-дихлорэтан, гидратация приводит к этиловому спирту, взаимодействие с HCl – к этилхлориду. При окислении этилена кислородом воздуха в присутствии катализатора образуется окись этилена. При жидкофазном каталитическом окислении кислородом получается ацетальдегид, в тех же условиях в присутствии уксусной кислоты – винилацетат. Этилен является алкилирующим агентом , например, в условиях реакции Фриделя-Крафтса алкилировать бензол и другие ароматические соединения. Этилен полимеризоваться в присутствии катализаторов как самостоятельно, так и выступать в роли сомономера, образуя обширный ряд полимеров с различными свойствами.ПрименениеЭтилен является одним из базовых продуктов промышленной химии и стоит в основании ряда цепочек синтеза. Основное направление использования этилена — в качестве мономера при получении полиэтилена (наиболее крупнотоннажный полимер в мировом производстве). В зависимости от условий полимеризации получают полиэтилены низкого давления и полиэтилены высокого давления.Также полиэтилен применяют для производства ряда сополимеров, в том числе с пропиленом, стиролом, винилацетатом и другими. Этилен является сырьем для производства окиси этилена; как алкилирующий агент – при производстве этилбензола, диэтилбензола, триэтилбензола.Этилен применяют как исходный материал для производства ацетальдегида и синтетического этилового спирта. Также он используется для синтеза этилацетата, стирола, винилацетата, хлористого винила; при производстве 1,2-дихлорэтана, хлористого этила.Этилен используют для ускорения созревания плодов — например, помидоров, дынь, апельсинов, мандаринов, лимонов, бананов; дефолиации растений, снижения предуборочного опадения плодов, для уменьшения прочности прикрепления плодов к материнским растениям, что облегчает механизированную уборку урожая.В высоких концентрациях этилен оказывает на человека и животных наркотическое действие.
Генетическая связь – это связь между веществами, которые относятся к разным классам. 1. Генетический ряд металлов, гидроксиды которых являются основаниями (щелочами): металл → основный оксид → основание (щелочь) → соль. Например, генетический ряд кальция: Ca → CaO → Ca(OH)2 → CaCl2
2. Генетический ряд металлов, которые образуют амфотерные гидроксиды: соль ↑ металл → амфотерный оксид → (соль) → амфотерный гидроксид ↓ cоль Например: ZnCl2 ↑ Zn → ZnO → ZnSO4 → Zn(OH)2 (H2ZnO2) ↓ Na2ZnO2 Оксид цинка с водой не взаимодействует, поэтому из него сначала получают соль, а затем гидроксид цинка. Так же поступают, если металлу соответствует нерастворимое основание.
3. Генетический ряд неметаллов (неметаллы образуют только кислотные оксиды): неметалл → кислотный оксид → кислота → соль
Например, генетический ряд фосфора: P → P2O5 → H3PO4 → K3PO4
Переход от одного вещества к другому осуществляется с химических реакций.
Хром может проявлять как окислительные, так и восстановительные свойства. (Так как он ещё может отдать до 3-ёх электронов, и принять тоже может)
K2Cr2[+6]O7
Хром может проявлять только окислительные свойства. (Хром может только принять электроны, так как отдавать уже нечего)
Cr2[+3](SO4)3
Хром может проявлять как окислительные, так и восстановительные свойства. (аналогично первому)