Задача 1.
HCHO + Ag2O = HCOOH + 2Ag
n(HCHO) = 120/30 = 4 моль
Из схемы реакции видим, что мольное соотношение НСНО и Ag равно 1:2, значит, количество Аg получилось в два больше.
n(Ag) = 2*4=8 моль
м(Ag) = 8*108 = 864г получилось
Задача 2.
CH3CHО + 2Cu(OH)2 = Cu2O + CH3COOH + 2H2O
n(CH3CHO) = 88/44 = 2 моль
Из реакции видим, что мольное сооотношение CH3CHO и СН3СООН равно 1:1, значит, получилось такое же количество вещества.
m(CH3COOH) = 2*60 = 120г кислоты получилось
Масса 20%го раствора будет равна 120/0,2 = 600г
Вторая задача криво сформулирована, я не уверен, что правильно её понял.
К важнейшим классам неорганических веществ по традиции относят вещества (металлы и неметаллы), оксиды (кислотные, основные и амфотерные), гидроксиды (часть кислот, основания, амфотерные гидроксиды) и соли. Вещества, относящиеся к одному и тому же классу, обладают сходными химическими свойствами. Но вы уже знаете, что при выделении этих классов используют разные классификационные признаки.
В этом параграфе мы окончательно сформулируем определения всех важнейших классов химических веществ и разберемся, по каким признакам выделяются эти классы.
Начнем с веществ (классификация по числу элементов, входящих в состав вещества). Их обычно делят на металлы и неметаллы (рис. 13.1-а).
Определение понятия " металл" вы уже знаете.
Металлы вещества, в которых атомы связаны между собой металлической связью.
Из этого определения видно, что главным признаком, позволяющим нам разделить вещества на металлы и неметаллы, является тип химической связи.
Image1016.gif (4425 bytes)
В большинстве неметаллов связь ковалентная. Но есть еще и благородные газы вещества элементов VIIIA группы), атомы которых в твердом и жидком состоянии связаны только межмолекулярными связями. Отсюда и определение.
Неметаллы вещества, в которых атомы связаны между собой ковалентными (или межмолекулярными) связями.
По химическим свойствам среди металлов выделяют группу так называемых амфотерных металлов. Это название отражает этих металлов реагировать как с кислотами, так и со щелочами (как амфотерные оксиды или гидроксиды) (рис. 13.1-б).
Кроме этого, из-за химической инертности среди металлов выделяют благородные металлы. К ним относят золото, рутений, родий, палладий, осмий, иридий, платину. По традиции к благородным металлам относят и несколько более реакционно серебро, но не относят такие инертные металлы, как тантал, ниобий и некоторые другие. Есть и другие классификации металлов, например, в металлургии все металлы делят на черные и цветные, относя к черным металлам железо и его сплавы.
Из сложных веществ наибольшее значение имеют, прежде всего, оксиды (см.§2.5), но так как в их классификации учитываются кислотно-основные свойства этих соединений, мы сначала вспомним, что такое кислоты и основания.
Кислоты – сложные вещества, содержащие в своем составе ионы оксония или при взаимодействии с водой образующие в качестве катионов только эти ионы.
Основания – сложные вещества, содержащие в своем составе гидроксид-ионы или при взаимодействии с водой образующие в качестве анионов только эти ионы.
Таким образом, мы выделяем кислоты и основания из общей массы соединений, используя два признака: состав и химические свойства.
По составу кислоты делятся на кислородсодержащие (оксокислоты) и бескислородные (рис. 13.2).
Кислородсодержащие кислоты (оксокислоты) – кислоты, в состав которых входят атомы кислорода.
Бескислородные кислоты – кислоты, молекулы которых не содержат кислорода.
Image1017.gif (2992 bytes)
Следует помнить, что кислородсодержащие кислоты по своему строению являются гидроксидами.
Примечание. По традиции для бескислородных кислот слово кислота" используется в тех случаях, когда речь идет о растворе соответствующего индивидуального вещества, например: вещество HCl называют хлороводородом, а его водный раствор – хлороводородной или соляной кислотой.
Теперь вернемся к оксидам. Мы относили оксиды к группе кислотных или основных по тому, как они реагируют с водой (или по тому, из кислот или из оснований они получаются). Но с водой реагируют далеко не все оксиды, зато большинство из них реагирует с кислотами или щелочами, поэтому оксиды лучше классифицировать по этому свойству.
Объяснение:
0,672 л / 22,4 л/моль = 0,03 моль
0,448 л / 22,4 л/моль = 0,02 моль
Пусть х - степень окисления металла в оксиде Me₂Oₓ. (индекс 2 при Me из-за двухвалентности кислорода)
Пусть а - степень окисления металла в хлориде MeClₐ.(индекса при Me нет, потому что соляная кислота одноосновная)
Пусть А - атомная масса металла Me.
Пусть А2 - молекулярная масса оксида металла Me₂Oₓ.
Тогда уравнения реакции восстановления водородом оксида металла и вытеснения металлом водорода из кислоты в общем виде:
Me₂Oₓ + xH₂ = 2Me + xH₂O
0,03 / х моль 0,03 моль 2*0,03 / х моль
1,6 г
Me + аHCl = MeClₐ + а /2 * H₂
2*0,02 / а моль 0,02 моль
1,12 г
(Множители и делители появились для учета коэффициентов. Например, в первом уравнении водорода получается xH₂ и это составляет 0.03 моль, а оксида было Me₂Oₓ - в х раз меньше, чем водорода, то есть 0,03/х. И так далее)
Количество вещества n = m / M
Количество вещества искомого металла n(Me) = m(Me) / A
Количество вещества оксида металла n(Me₂Oₓ) = m(Me₂Oₓ) / A2
Из двух уравнений получается, что
0,03/х = 1,6 / А2
2*0,02/а = 1,12 / А
Отсюда отношения А и А2 к а и х соответственно:
А2 / х = 1,6 / 0,03 = 53,3 г/моль
А / а = 1,12 / (2*0,02) = 28 г/моль
Исследуем возможные значения а
а=1, А=28 - ближайшие по массе элементы - алюминий Al (27) и кремний Si (28). Однако Si - неметалл. а Al - не образует одновалентных соединений.
а=2, А = 2*28 = 56 - ближайшие по массе элементы - железо Fe(55,84) и кобальт Co(58,93).
Допустим, это железо. Ведь оно действительно реагирует с соляной кислотой с вытеснением водорода и образованием хлорида железа (II), то есть со степенью окисления +2.
Согласуется ли это с формулой оксида?
А2 / х = 1,6 / 0,03 = 53,3
х = 1, А2 = 53,3
Тогда формула оксида Me₂O, что соответствует одновалентному металлу.
Если M(Me₂O) = 53.3,
то A(Me) = (53.3 - 16) / 2 = 18.65 г/моль.
Ближайшие по массе элементы - кислород O (16) и фтор F(19). Они оба неметаллы.
х = 2, А2 = 53,3*2 = 106,6 г/моль
Тогда формула оксида Me₂O₂.
Если M(Me₂O₂) = 106.6,
то A(Me) = 106.6 / 2 - 16 = 37,3 г/моль.
Ближайшие по массе элементы - хлор Cl (35) и аргон Ar (40). Хлор - неметалл, аргон - инертный газ.
х=3, А2 = 53,3*3 = 159,9 г/моль
Тогда формула оксида Me₂O₃.
Если M(Me₂O₃) = 159,9,
то A(Me) = (159,9 - 3*16) / 2 = 55,95 г/моль.
Ближайшие по массе элементы - железо Fe (55,84) и кобальт Co (58,93)
Оксид железа Fe₂O₃ действительно существует и может быть восстановлен водородом.
Итак, только один металл - железо Fe - соответствует обоим уравнениям:
Fe₂O₃ + 3 H₂ = 2 Fe + 3 H₂O
0,01 моль 0,03 моль 0.02 моль
(количество вещества продуктов и реагентов вычислено по самым первым уравнением реакций, где уже учтены коэффициенты. Поэтому домножать или делить на реальные коэффициенты не нужно)
M(Fe₂O₃) = 2 * 55.85 + 3*16 = 159.7 г/моль
m(Fe₂O₃) = 0.01 моль * 159.7 г/моль = 1,597 г ≈ 1,6 г. (совпадает с условием задачи)
m(Fe) = 0,02 моль * 55,85 г/моль = 1,117 г ≈ 1,12
Fe + 2 HCl = FeCl₂ + H₂
0,02 моль 0.02 моль
M(Fe) = 55.85 г/моль
m(Fe) = 0.02 моль * 55.85 г/моль = 1,117 г ≈ 1,12 (совпадает с условием задачи)
Как видно, количество вещества (и масса) железа, полученного в первой реакции и израсходованного во второй реакции, совпадает.
Разница же объемов водорода, израсходованного в первой реакции и полученного во второй реакции связана с тем, что положительные степени окисления железа в этих реакциях не совпадают. В первой реакции водорода нужно больше, чтобы восстановить железо из более глубокой степени окисления. Во второй реакции железо окисляется не так глубоко, поэтому водорода выделяется меньше.