метания на дальность и в цельМетание с места метания «из-за спины через плечо». Исходное положение : правая нога отставлена назад, на носок, туловище повернуто грудью в сторону метания, правая рука согнута в локте, локоть опущен, кисть с мячом на уровне лица. Из исходного положения правую руку отвести в сторону, туловище повернуть направо,, правую ногу слегка согнуть в колене, туловище наклонить вправо. .Затем пронося правую руку сверху над плечом, перейти в положение «натянутого лука» и выполнить финальное усилие броска активным захлестом кисти руки. Во время финального усилия туловище. И ноги выпрямляются. После броска левая нога сгибается в колене, туловище наклоняется вперед, левая рука отводится назад. А правая свободно продолжает двигаться вперед-вниз метания «прямой рукой снизу». При исходном положении ноги поставлены немного шире плеч, правая отставлена назад , правая рука полусогнута в локте перед грудью. При замахе правая рука отводится вниз-назад до предела, и бросок происходит путем движения рук вперед-вверх метания «прямой рукой сверху». При иcходном положении ноги поставлены немного шире плеч, правая отставлена назад, правая рука вдоль туловища (с мячом). При замахе правая рука переносится вверх-назад, затем направляется вперед и кистью выбрасывается мяч метания «прямой рукой сбоку». Исходное положение - ноги немного шире плеч, правая нога отставлена назад, правая рука с мячом вдоль тела. При замахе туловище отклоняется, правая рука отводится назад до предела, тяжесть тела переносится на правую ногу, согнутую в колене. При броске правая нега выпрямляется, туловище поворачивается налево-вперед, а правая рука продвигается вперед и выбрасывает кистью мяч.
Как найти наименьший общий знаменатель Для сложения или вычитания дробей с разными знаменателями сначала необходимо найти их наименьший общий знаменатель (НОЗ). Таким числом будет наименьшее общее кратное (НОК) двух или более знаменателей. Вот несколько различных методов для вычисления НОЗ и информация о том, как подставить НОЗ обратно в уравнение для решения задачи.
Реклама Править Метод 1 из 4: Перечисление кратных [1]
1 Перечислите кратные каждого знаменателя. Составьте список из нескольких кратных для каждого знаменателя в уравнении. Каждый список должен состоять из произведения знаменателя на 1, 2, 3, 4 и так далее. Пример: 1/2 + 1/3 + 1/5 Кратные 2: 2 * 1 = 2; 2 * 2 = 4; 2 * 3 = 6; 2 * 4 = 8; 2 * 5 = 10; 2 * 6 = 12; 2 * 7 = 14; т.д. Кратные 3: 3 * 1 = 3; 3 * 2 = 6; 3 *3 = 9; 3 * 4 = 12; 3 * 5 = 15; 3 * 6 = 18; 3 * 7 = 21; т.д. Кратные 5: 5 * 1 = 5; 5 * 2 = 10; 5 * 3 = 15; 5 * 4 = 20; 5 * 5 = 25; 5 * 6 = 30; 5 * 7 = 35; т.д.
2 Определите наименьшее общее кратное. Просмотрите каждый список и отметьте любые кратные числа, которые являются общими для каждого оригинального знаменателя. После выявления общих кратных определите наименьший знаменатель. Обратите внимание, что если не найден общий знаменатель, возможно, потребуется продолжить выписывать кратные до тех пор, пока не появится общее кратное число. Пример: 2 * 15 = 30; 3 * 10 = 30; 5 * 6 = 30 НОЗ = 30
3 Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель. Пример: 15 * (1/2); 10 * (1/3); 6 * (1/5) Новое уравнение: 15/30 + 10/30 + 6/30
4 Решите. После нахождения НОЗ и изменения соответствующих дробей, просто вычислите значение этого сложения. Пример: 15/30 + 10/30 + 6/30 = 31/30 = 1 1/30 Реклама Править Метод 2 из 4: Использование наибольшего общего делителя[2]
1 Вычислите наибольший общий делитель (НОД) для каждого знаменателя. Найдите НОД через перечисление возможных делителей каждого знаменателя. Пример: 3/8 + 5/12 Делители 8: 1, 2, 4, 8 Делители 12: 1, 2, 3, 4, 6, 12 НОД: 4
5 Решите уравнение. НОЗ найден; просто найдите значение этой суммы. Пример: 9/24 + 10/24 = 19/24 Реклама Править Метод 3 из 4: Разложение каждого знаменателя на простые множители[3]
1 Разложите каждый знаменатель на простые множители. Напомним, что простые множители – числа, которые делятся только на 1 или самих себя. Пример: 1/4 + 1/5 + 1/12 Простые множители 4: 2 * 2 Простые множители 5: 5 Простые множители 12: 2 * 2 * 3
2 Подсчитайте число раз каждый простой множитель есть у каждого знаменателя. Пример: Есть две 2 для знаменателя 4; нуль 2 для 5; две 2 для 12 Есть нуль 3 для 4 и 5; одна 3 для 12 Есть нуль 5 для 4 и 12; отдна 5 для 5
3 Возьмите только наибольшее число раз (эти множители есть в любом знаменателе) для каждого простого множителя. Например: наибольшее число раз для множителя 2 - 2 раза; для 3 – 1 раз; для 5 – 1 раз.
4 Запишите по порядку найденные в предыдущем шаге простые множители (с учетом наибольшего числа раз). Пример: 2, 2, 3, 5
5 Перемножьте эти числа. Результат произведения этих чисел равно НОЗ. Пример: 2 * 2 * 3 * 5 = 60 НОЗ = 60