![1)\; \; M(2,1,2)\; ,\; N(3,-2,4)\; ,\; K(-2,3,1)\\\\\alpha :\; Ax+By+Cz+29=0\\\\\overline {MN}=(1,-3,2)\; \; ,\; \; \overline {MK}=(-4,2,-1)\\\\\vec{n}=[\, \overline {MN}\times \overline {MK}\, ]=\left|\begin{array}{ccc}i&j&k\\1&-3&2\\-4&2&-1\end{array}\right|=-\vec{i}-7\vec{j}-10\vec{k}\\\\\\\vec{n}=k\cdot (-1,-7,-10)=(-k,-7k,-10k)\\\\A(x-x_0)+B(y-y_0)+C(z-z_0)=0\; \; ,\; \; A=-k\; ,\; B=-7k\; ,\; C=-10k\; ,\\\\-k\cdot (x-2)-7k\cdot (y-1)-10k\cdot (z-2)=0\\\\-k\cdotx-7k\cdoty-10k\cdot z+29k=0\\\\29k=29\; \; \Rightarrow \; \; k=1\\\\\alpha :\; -x-7y-10z+29=0\\\\\underline {A=-1\; ,\; B=-7\; ,\; C=-10}](/tpl/images/1011/2495/66341.png)


M+N+K:
2x⁴+x³y-3x²y²+4xy³-y⁴-3x⁴+2x³y+5x²y²+y⁴+x⁴-x³y-2x²y²+4xy³-2y⁴=-2y⁴+8xy³+2x³y=2y(-y³+4xy²+x³)
M-N+K:
2x⁴+x³y-3x²y²+4xy³-y⁴-(-3x⁴+2x³y+5x²y²+y⁴)+x⁴-x³y-2x²y²+4xy³-2y⁴=2x⁴+x³y-3x²y²+4xy³-y⁴+3x⁴-2x³y-5x²y²-y⁴+x⁴-x³y-2x²y²+4xy³-2y⁴=4x⁴-2x³y-10x²y²+8xy³-4y⁴
M-N-K:
2x⁴+x³y-3x²y²+4xy³-y⁴-(-3x⁴+2x³y+5x²y+y⁴)-(x⁴-x³y-2x²y²+4xy³-2y⁴)=2x⁴+x³y-3x²y²+4xy³-y⁴+3x⁴-2x³y-5x²y²-y⁴-x⁴+x³y+2x²y²-4xy³+2y⁴=4x⁴-2x³y-6x²y²
- M+N+K:
-(2x⁴+x³y-3x²y²+4xy³-y⁴)-3x⁴+2x³y+5x²y²+y⁴+x⁴-x³y-2x²y²+4xy³-2y⁴=-2x⁴-x³y+3x²y²-4xy³+y⁴-3x⁴+2x³y+5x²y²+y⁴+x⁴-x³y-2x²y²+4xy³-2y⁴= -4x⁴+6x²y²