Пошаговое объяснение:
z:35=18
z=18×35
z=630
168:v=4
v=168:4
v=42
13+10*T=163
10*T=163-13
10*T=150
T=150:10
T=15
181-8*R=45
8*R=181-45
8*R=136
R=136:8
R=17
Для начала проверим, будет ли делиться на 3 число, состоящее из 666 единиц. Если сумма цифр числа делится на три, то и само число будет делиться на три.
1 * 666 = 666;
6 + 6 + 6 = 18, делится на 3;
значит и число из 666 единиц делится на 3.
Начнем делить число в столбик
Начнем делить число 111...111 на 3 в столбик.
11 : 3 = 3 (остаток 2, спускаем вниз 1);
21 : 3 = 7 (остатка нет, спускаем 1);
1 : 3 = 0 (остаток 1, спускаем 1);
11 : 3 = 3 (остаток 2, спускаем 1);
21 : 3 = 7 (остаток 0, спускаем 1);
1 : 3 = 0 (остаток 1, спускаем 1);
11 : 3 = 3 (остаток 2, спускаем 1), то есть все повторяется.
Найдем закономерность повторений.
Получается ответ: 370370...
Высчитаем количество цифр получившегося числа
Все число, состоящее из 666 единиц, можно разбить на тройки по три единицы (111, 111).
Мы начали делить с 11 (двузначное) на 3, получилось 3 (однозначное, то есть число будет меньше на один разряд).
Значит, число будет состоять из 665 цифр. Каждая тройка единиц даст в ответе три цифры, из которых один ноль, кроме первых трех единиц, они дадут две цифры.
То есть число будет выглядеть так: 37 037 037...037.
Посчитаем количество нулей в получившемся числе: 666 : 3 = 222. Но так как в первой тройке нет нуля, значит, 222 - 1 = 671.
ответ: В получившемся числе будет 221 ноль.
1)18×35=630
2)168:4=42
3)10*T=50
T= 5
4)8*R=136
R=17