Точка О - пересечение биссектрис углов А и В. Сумма углов А и В -180 градусов. Значит АОВ -прямоугольный треугольник. Его высота радиус, вписанной в трапецию окружности.. Квадрат боковой стороны по теореме Пифагора 1+9=10 sqrt(10) *r=3*1 (произведение высоты на гипотенузу равно произведению катетов) r=3/sqrt(10) Квадрат половины большего основания : 9-0,9=8,1 (по теореме Пифагора). Большее основание=6/sqrt(10) Точно также меньшее основание 2/sqrt(10) Площадь трапеции (3+1)*6/10=2,4 (высота равна двум радиусам , ее надо умножить на полусумму оснований)
Если только так. №1 а) Рассмотрим ΔBCD. ∠BDC = 90°, т.к. CD⊥BD. CD = AB = 34 см Найдем ВС по т. Пифагора. BC = √(BD² + 34²) (см)
б) Рассмотрим ΔBCD. ∠BDC = 90°, т.к. CD⊥BD. CD = AB = 8,5 дм Найдем ВС по т. Пифагора. BC = √(BD² + 8,5²) (дм)
№2 а) В прямоугольном треугольнике, катет лежащий напротив угла в 30°, равен половине гипотенузы. 17 * 2 = 34 (мм) - длина гипотенузы. ответ: 34 мм.
в) 48 : 24 = 1/2 - это отношение катета и гипотенузы. Т. к. катет равен половине гипотенузы, значит, он лежит напротив угла в 30°. Т.к. Δ прямоугольный, значит один из углов равен 90°. 180° - 90° - 30° = 60° - третий угол. ответ: 90°; 60°; 30°.
Значит АОВ -прямоугольный треугольник.
Его высота радиус, вписанной в трапецию окружности.. Квадрат боковой стороны по теореме Пифагора 1+9=10
sqrt(10) *r=3*1 (произведение высоты на гипотенузу равно произведению катетов) r=3/sqrt(10)
Квадрат половины большего основания : 9-0,9=8,1 (по теореме Пифагора). Большее основание=6/sqrt(10)
Точно также меньшее основание 2/sqrt(10)
Площадь трапеции (3+1)*6/10=2,4 (высота равна двум радиусам , ее надо умножить на полусумму оснований)