1) проведём высоты nh и ks. ⇒ угол mhn=90° и угол ksp=90°⇒треугольники mhn и pks - прямоугольные. 2) mh/mn=sin45° mh/8=корень из 2/2 mh=4 корней из 2 3)sp/kp=sin30° sp/10=1/2 sp=5 4) hnks - прямоугольник, т.к hnks является параллелограммом (nk параллельно hs, т.к основания трапеции параллельны и nh параллельно ks по соответственно равным ∠ 90° = nhm и ksm), у которого все ∠ равны по 90° значит nk=hp=5 см отсюда mp=mh+hs+sp= 4√2 + 5 + 5 = 10 + 4√2 (см) 5) средняя линия bd = (nk + mp)/2= (5 + 10 + 4√2)/2 = 7,5 + 2 √2 ответ: 7,5 + 2√ 2
S - вершина
О - середина основания
SO - высота = 9√3
АВ=ВС=АС= 9√3
SA - ?
Найдём длину АО:
АО = 1/2 * АP
где АР - высота треугольника АВС
Найдем площадь треугольника:
S = a²√3/4 = (9√3)²*√3/4 = 243√3 /4 см²
Также площадь треугольника находится через высоту:
S = 1/2 * a * h
Найдём отсюда высоту:
243√3 /4 = 1/2 * 9√3 * h
1/2 * h = 81/4
h = 81/2 см
AO = 1/2 * 81/2 = 81/4 см
По теореме Пифагора:
SA² = AO²+SO²
SA² = (81/4)² + (9√3)²
SA² = 6561/16 + 243
SA² = 10449/16
SA = √10449/4
ответ: √10449/4 см