М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
annachernaya04ow7wxu
annachernaya04ow7wxu
22.08.2022 00:33 •  Математика

Левый фокус гиперболы 7x2 - 9у2 = 63, a(-1, -2)

👇
Ответ:
yvtcrvt
yvtcrvt
22.08.2022
Хорошо, давайте разберем этот вопрос по шагам.

1. Первым шагом нам нужно определить положение фокусов гиперболы.

В формуле гиперболы 7x^2 - 9y^2 = 63 у нас есть два квадрата - x^2 и y^2. Это говорит о том, что гипербола открывается как по оси x, так и по оси y. Так как коэффициент при x^2 положительный, гипербола располагается горизонтально.

На горизонтальной гиперболе фокусы находятся на оси x, и их положение определяется формулой c^2 = a^2 + b^2, где c - расстояние от центра гиперболы до фокуса, a - полуось гиперболы по горизонтали, b - полуось гиперболы по вертикали.

В данном случае у нас гипербола имеет уравнение 7x^2 - 9y^2 = 63. Распишем это уравнение в виде (x - h)^2 / a^2 - (y - k)^2 / b^2 = 1, где (h, k) - координаты центра гиперболы.

Получим (x - 0)^2 / (9/7)^2 - (y - 0)^2 / (7/9)^2 = 1.

Таким образом, a = 9/7 и b = 7/9.

2. Теперь найдем расстояние от центра гиперболы до фокуса.

Используем формулу c^2 = a^2 + b^2, где c - расстояние от центра гиперболы до фокуса. Подставляем значения a и b:

c^2 = (9/7)^2 + (7/9)^2
c^2 = 81/49 + 49/81
c^2 = (81 * 81 + 49 * 49) / (49 * 81)
c^2 = (6561 + 2401) / 3969
c^2 = 8962 / 3969
c^2 ≈ 2.258

Таким образом, c ≈ √2.258 ≈ 1.503.

Теперь мы знаем, что расстояние от центра гиперболы до фокуса составляет примерно 1.503 единицы.

3. Так как у нас горизонтальная гипербола, фокусы будут находиться на оси x.

Для нахождения координат фокусов после центра нужно отнять или прибавить c к координате центра гиперболы. В данном случае центр находится в точке (0, 0), поэтому для определения координат фокусов нужно отнять или прибавить c к x-координате центра.

Фокусы гиперболы будут иметь координаты (0 - 1.503, 0) и (0 + 1.503, 0).

Таким образом, левый фокус гиперболы будет иметь координаты (-1.503, 0) или, округленно, (-1.5, 0).

4. Ответ:

Левый фокус гиперболы 7x^2 - 9y^2 = 63 имеет координаты (-1.5, 0).
4,6(49 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ