Для вычисления предела на бесконечности частного двух многочленов можно сравнить степени многочленов - если степень числителя больше, то предел частного будет равен бесконечности. если степени одинаковые, то предел будет равен отношению коэффициентов при старших степенях. Если степень в значменателе больше, то предел будет равен нулю. Примеры на все три случая:
1)
2)
3)
В числителе стоит бесконечно большая функция, знаменатель стремится к 2 (то есть имеет конечный предел), значит частное будет бесконечно большим.
Наурыз - это праздник казахского народа. наурыз является новым годом в стране - казахстан, ведь весной природа начинает оживать и обретать новый прекрасный окрас. празднику наурыз уже более трех тысячи лет, этот праздник сохранился еще с тех времен, когда территорию казахстан охватили кочевые племена, населявшие всю страну. праздник наурыз казахи празднуют в марте, точнее весной. перед праздником принято отдавать долги или же продавать старые вещи. главным блюдом праздника является - наурыз коже. наурыз коже блюдо состоящее из семи ингредиентов. в ранее время, кочевники устраивали различные игры, состязания, готовили различные блюда, радуясь новому году. казахи ценят этот праздник и стараются его провести традиционно и весело.
1) -3
2) 0
3) ∞
Пошаговое объяснение:
Для вычисления предела на бесконечности частного двух многочленов можно сравнить степени многочленов - если степень числителя больше, то предел частного будет равен бесконечности. если степени одинаковые, то предел будет равен отношению коэффициентов при старших степенях. Если степень в значменателе больше, то предел будет равен нулю. Примеры на все три случая:
1)![\lim\limits_{x\to \infty} \frac{-3x^4+x^2+x}{x^4+3x-2}=\lim\limits_{x\to \infty} \frac{(-3x^4+x^2+x)/x^4}{(x^4+3x-2)/x^4}=\lim\limits_{x\to \infty} \frac{-3+\frac{1}{x^2} +\frac{1}{x^3} }{1+\frac{3}{x^3} -\frac{2}{x^4} }=\\](/tpl/images/4828/7916/b7569.png)
2)![\lim\limits_{x\to \infty} \frac{2x^2-5x+2}{x^4+3x^2-9}=\lim\limits_{x\to \infty} \frac{(2x^2-5x+2)/x^4}{(x^4+3x^2-9)/x^4}=\lim\limits_{x\to \infty} \frac{\frac{2}{x^2} -\frac{5}{x^3} +\frac{2}{x^4} }{1+\frac{3}{x^2} -\frac{9}{x^4} }=\\](/tpl/images/4828/7916/04fe8.png)
3)![\lim\limits_{x\to \infty} \frac{3x^6-5x^2+2}{2x^3+4x-5}=\lim\limits_{x\to \infty} \frac{(3x^6-5x^2+2)/x^3}{(2x^3+4x-5)/x^3}=\lim\limits_{x\to \infty} \frac{3x^3 -\frac{5}{x} +\frac{2}{x^3} }{2+\frac{4}{x^2} -\frac{5}{x^3} }\\](/tpl/images/4828/7916/cceb9.png)
В числителе стоит бесконечно большая функция, знаменатель стремится к 2 (то есть имеет конечный предел), значит частное будет бесконечно большим.