Так как по условию число делится на 5, то оно должно оканчиваться на 0 или 5
1) Рассмотрим случай, когда число оканчивается на 0. Тогда предыдущие три позиции будут заняты тремя цифрами из четырех: 1,3,5,7. То есть, нам требуется найти число размещений из 4 элементов по 3:
А(4,3)=4!=1·2·3·4=24
Итак, получили 24 четырехзначных числа, оканчивающихся на 0.
2) Рассмотрим случай, когда число оканчивается на 5. Тогда предыдущие три позиции будут заняты тремя цифрами из 0,1,3,7. Аналогично предыдущему случаю получим 24 варианта.
Но!
Так как 0 не может стоять на первой позиции ( иначе число становится трехзначным), то необходимо исключить варианты: 013, 031, 017, 071, 037, 073. Тогда получаем 24-6=18 четырехзначных числа, оканчивающихся на 5
Итого, общее количество четырехзначных чисел: 24+18=42
Разделим первое уравнение на 3 и получим х-у+z=4 Теперь его сложим с третьим и получим -у+3z=2. Теперь первое уравненние умножим на 2 и получим 2х-2у+2z=8. Теперь его сложим со вторым и получим у-3z= - 2 умножим обе части на -1 и получим -у+3 Z=2 Полученные уравнения одинаковы, значит в системе бесконечно много решений находимых по формуле у=3z-2.Z- любое число. Первое уравнение умножим на -3 9х-3у=12 Его сложим со вторым будет -у+z=15 Теперь первое умножим на 2 получим -6х +2у=-8 и сложим с третьим будет у-z=-13 Сравним у-z=-13 и у-z=-15 Эти два уравнения несовместимы, значит система не имеет решений.
Так как по условию число делится на 5, то оно должно оканчиваться на 0 или 5
1) Рассмотрим случай, когда число оканчивается на 0. Тогда предыдущие три позиции будут заняты тремя цифрами из четырех: 1,3,5,7. То есть, нам требуется найти число размещений из 4 элементов по 3:
А(4,3)=4!=1·2·3·4=24
Итак, получили 24 четырехзначных числа, оканчивающихся на 0.
2) Рассмотрим случай, когда число оканчивается на 5. Тогда предыдущие три позиции будут заняты тремя цифрами из 0,1,3,7. Аналогично предыдущему случаю получим 24 варианта.
Но!
Так как 0 не может стоять на первой позиции ( иначе число становится трехзначным), то необходимо исключить варианты: 013, 031, 017, 071, 037, 073. Тогда получаем 24-6=18 четырехзначных числа, оканчивающихся на 5
Итого, общее количество четырехзначных чисел: 24+18=42
ответ: 42 числа