В задании представлены дроби, имеющие одинаковый числитель.
Сравниваются по правилу сравнения дробей с одинаковым числителем: "Из 2-х дробей с одинаковым числителем больше та дробь, у которой знаменатель меньше". иными словами, дробь - это деление, если 2 делим на 1, то 2/1=2. Если 2 делим на 2, то 2/2=1.
1) 1/5 и 1/3, 5>3 => 1/5<1/3
2) 1/7 и 1/9, 7<9 => 1/7>1/9
3) 2/13 и 2/3, 13>3 => 2/13<2/3
4) 4/5 и 4/7, 5<7 => 4/5>4/7
5) 11/13 и 11/15, 13<15 => 11/13>11/15
6) 8/15 и 8/11, 15>11 => 8/15<8/11
Пошаговое объяснение:
Первый для младших школьников).
Из трёх мальчиков надо взять двоих. Сколько существует
Что бы было легче понять, пронумеруем мальчиков: 1-ый, 2-ой, 3-ий.
По два мальчика есть всего три варианта: 1 и 2; 1 и 3; 2 и 3.
Но к ним добавить девочку можно пятью То есть, возьмём первую пару мальчиков и к ним добавим первую девочку, а можно вторую, третью, четвёртую или пятую. Получется, на каждую пару мальчиков пять вариантов девочек.
Итого: 3∙5=15.
Второй с применением формул комбинаторики), решение смотри на фотографии, не установлен у меня LaTeX, не знаю, как набрать по другому формулы.
Мальчики - число сочетаний из 3 по 2.
Девочки - число сочетаний из 5 по 1.
Так как надо, чтобы одновременно выполнялись два условия (про мальчиков и девочек), то применим закон умножения и сочетания перемножим.
50
так как модулем -34 является 34, а модулем -16 16.Их сумма равна 50