Возьмем катер туда плыл 48 км со скоростью Vк+Vр , обратно 48 км со скоростью Vк-Vр и всёэто за 7 часов и того получаем уравнение :
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр. А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр). так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем
Задачу можно решить двумя 1) посредством формул, аксиом и теорем планиметрии, изучаемых в стандартной школьной программе; 2) и через привлечение теоремы Менелая. Решим её обоими
[[[ 1 ]]] с п о с о б
Обозначим длины сторон треугольника как:
; ; и ;
Тогда: ;
Обозначим где – некоторое число,
такое, что: ;
Найдя это число мы найдём и пропорцию, в которой делит сторону ;
Проведём прямую тогда по трём углам:
а значит: и ;
и ;
[1] и ;
Поскольку то:
;
;
По трём углам: а значит:
и ;
Поскольку и по [1] то:
;
;
По теореме Фалеса, об отсечении параллельными прямыми внутри угла пропорциональных отрезков, получается, что:
;
Тогда получаем уравнение:
;
;
;
;
;
;
Значит и откуда ясно, что отношение, в котором точка делит сторону считая от точки будет:
;
[[[ 2 ]]] с п о с о б
Применим теорему Менелая
в треугольнике с секущей :
;
;
;
;
;
;
Отсюда: ;
;
Значит откуда ясно, что отношение, в котором точка делит сторону считая от точки будет:
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр.
А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр).
так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем