Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках.
"Опасные" точки сразу видны, это: 1) - знаменатель обращается в 0. 2) - по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов: (при →∞)
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при →∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при →∞)
Итак: 1) →+∞ предел равен 2) →-∞ предел равен
3) →0 предел равен:
4) → По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).
Сложение рациональных чисел обладает переместительным и сочетательным свойствами. Иными словами, если а, b и с — любые рациональные числа, то 1)a+(b+c)=(a+b)+c Прибавление нуля не изменяет числа, а сумма противоположных чисел равна нулю.Значит, для любого рационального числа имеем: 2) a+0=a 3) a+(-a)=0 Умножение рациональных чисел тоже обладает переместительным и сочетательным свойствами. Другими словами, если а, b и с — любые рациональные числа, то 4) a*b=b*a 5) a*(bc)=(ab)*c Умножение на 1 не изменяет рационального числа, а произведение числа на обратное ему число равно 1. Значит, для любого рационального числа a имеем: 6) a*1=a 7) a* 1/a=1, при а неравном нулю Умножение числа на нуль даёт в произведении нуль, т. е. для любого рационального числа а имеем: 8) a*0=0 Произведение может быть равно нулю лишь в том случае, когда хотя бы один из множителей равен нулю: если a • b = 0, то либо a = 0, либо b = 0 (может случиться, что и a = 0, и b = 0).
Условие:
Всего-240 банок