Пошаговое объяснение:
(-7)(-7)(-7)(-7)(-7)(-7)=(-7)^6
2·2·2·2=2^4
(х+1)·(х+1)·(х+1)·(х+1)·(х+1)=(х+1)^5
3^4=81
(-2)^5=-32
4^2=16
0,2^3=0,008
(1/4)^3=1/64
x dx 1 2x dx 1 d(7+x²) 1
∫ = ∫ = ∫ = ln(7+x²)+C
7+x² 2 7+x² 2 7+x² 2
[1/2 *ln(7+x²)+C ]¹= 1/2*[ 2x /(7+x²)+0]= x /(7+x²)
x+18 (x-2)+20 1 2(x-2) dx
2) ∫dx=∫ dx= ∫ dx+20 ∫ =
x²-4x-12 (x-2)²-16 2 (x-2)²-16 (x-2)²-16
1 1 | x-2-4 | 1 5 | x-6 |
= *ln|(x-2)²-16|+20 * *ln || +C= *ln |x²-4x-12|+*ln || +C
2 2*8 | x-2+4 | 2 4 | x+2 |
3) ∫(3-x) cosx dx=[ u=3-x , du=-dx , dv=cosx dx , v=sinx ] =(3-x)sinx+∫ sinx dx=
=(3-x)sinx-cosx+C
[(3-x)sinx-cosx]¹= -sinx+(3-x)cosx+sinx +0=(3-x)cosx
Пошаговое объяснение:
(-7)(-7)(-7)(-7)(-7)(-7)= (-7)⁶
2·2·2·2= 2⁴
(х+1)·(х+1)·(х+1)·(х+1)·(х+1)= (x + 1)⁵
3⁴ = 81
(-2)⁵ = -32
4² = 16
(0,2)³ = 0,008
(1/4)³ = 1/64