Можно ли так расставить фишки в клетках таблицы 20 х 20, чтобы в любых двух столбцах количество фишек было различным, а в любых двух строках – одинаковым?
Покажем, что p=4 не подходит. Разобьем коробку на 9 квадратов 4 на 4 ячейки (по условию, вся коробка представляет из себя квадрат 12 на 12 ячеек. Из условия следует, что в коробке находится не менее 12 пуговиц, но тогда хотя бы в одном квадрате должно находиться не менее 2 пугович, что противоречит условию. Следовательно, не подойдут и большие значения p.
Ниже приведено размещение пуговиц (1 — пуговица, 0 — пустая ячейка), такое, что в любом квадрате 3 на 3 ячейки находится не более 1 пуговицы и в каждой горизонтали и вертикали есть по 1 пуговице.
Так как as=bs=8 и bc=ac=17, то вершина пирамиды S лежит в вертикальной плоскости.Проведём вертикальную секущую плоскость через вершины S и С. В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС. Находим стороны треугольника SDC: DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549. SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6. Высота из вершины S является высотой пирамиды SО. Находим её по формуле: Подставим значения: a b c p 2p 16.155494 15 6 18.577747 37.15549442 и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145. Площадь основания пирамиды находим по формуле Герона: a b c p 2p S 17 17 10.583005 22.291503 44.58300524 85.48684109. Площадь основания можно выразить так: S = 85.48684109 = √7308 = 6√(7*29). Тогда получаем объём пирамиды: V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
Ниже приведено размещение пуговиц (1 — пуговица, 0 — пустая ячейка), такое, что в любом квадрате 3 на 3 ячейки находится не более 1 пуговицы и в каждой горизонтали и вертикали есть по 1 пуговице.
100000000000
000100000000
000000100000
000000000100
010000000000
000010000000
000000010000
000000000010
001000000000
000001000000
000000001000
000000000001
ответ: 3