НОК натуральных чисел a и b называю наименьшее натуральное число, которое кратно и a, и b. (Иными словами если это число делить на a или b, то ответ будет целое число).
Решают так:
1) разложим числа на простые множители:
18 = 2 Х 3 Х 3
45 = 3 Х 3 Х 5
2) выпишем множители входящие в разложение одного из чисел
ну без разницы, например: 3 Х 3 Х 5
3) добавить к ним недостающие множители из разложения остальных чисел (просто НОК можно искать для двух, трех и более чисел)
Обозначим Холодильник Х, Телевизор Т, Микроволновку М. Из 65 человек 3 купили сразу 3 покупки. Остальные 62 - меньше трёх. Уменьшим все числа на 3, чтобы дальше не путаться. Всего купили 32 Х, 33 М, 34 Т, 17 купили только Х и М, 16 купили только М и Т, 12 купили только Х и Т. Значит, 32 - 17 - 12 = 3 купили только Х. 33 - 17 - 16 = 0 купили только М, 34 - 16 - 12 = 6 купили только Т. Получается такая картина: 3 человека купили Х, М и Т. 17 купили Х и М. 16 купили М и Т. 12 купили Х и Т. 3 купили только Х, 6 купили только Т. Никто не купил только М. Проверим. Х купили: 3+17+12+3 = 35. М купили 3+17+16 = 36. Т купили 3+16+12+6 = 37. Всё правильно. Всего купивших было: 3 + 17 + 16 + 12 + 3 + 6 = 57 человек. А всего пришло в магазин 65. Значит, 65 - 57 = 8 человек не купили ничего. Диаграмму Эйлера я нарисовал.
наименьшее общее кратное (НОК) :
НОК натуральных чисел a и b называю наименьшее натуральное число, которое кратно и a, и b. (Иными словами если это число делить на a или b, то ответ будет целое число).
Решают так:
1) разложим числа на простые множители:
18 = 2 Х 3 Х 3
45 = 3 Х 3 Х 5
2) выпишем множители входящие в разложение одного из чисел
ну без разницы, например: 3 Х 3 Х 5
3) добавить к ним недостающие множители из разложения остальных чисел (просто НОК можно искать для двух, трех и более чисел)
так, чего нам не хваает? а! одной двойки, получим
НОК (18, 45) = 3 Х 3 Х 5 х 2 = 90
30 = 2 Х 3 Х 5
40 = 2 Х 2 Х 2 Х 5
НОК (30, 40) = 2 Х 2 Х 2 Х 5 Х 3 = 120
210 = 2 Х 3 Х 5 Х 7
350 = 2 Х 5 Х 5 Х 7
НОК (210, 350) = 2 Х 5 Х 5 Х 7 Х 3 = 1050
20 = 2 Х 2 Х 5
70 = 2 Х 5 Х 7
15 = 3 Х 5
НОК (20, 70, 15) = 2 Х 2 Х 5 Х 7 Х 3 = 420