Длинное основание AH равнобедренной трапеции ALMH равно 29 см, короткое основание LM и боковые стороны равны. Определи периметр трапеции, если острый угол трапеции равен 65°.
Как избавиться от обиды? Обида – одно из самых тяжелых чувств, сопровождающих нас в жизни. Она окрашивает жизнь в темные тона, заставляет слышать ядовитый подтекст в самых обычных высказываниях, портит отношения между близкими людьми, гробит наше собственное здоровье.Я не могу его контролировать. Я предоставляю ему возможность стать лицом к реальности и самому исправлять свои ошибки. Нужно создать образ прощения – символ, образ. У меня, например, это поток света, у моих подруг – у кого образ березки, у кого – дороги, у кого – неба.
Обозначим расстояния, которые проехали велосипедисты до момента их встречи. Первый проехал x + 0.2k. x - некоторое вещественное число в диапазоне [0;0.2) км - это часть круга, начиная с отправной точки и заканчивая текущим положением велосипедиста. k - некоторое целое неотрицательное число - это количество полных кругов, которое успел проехать первый велосипедист Второй проехал x + 0.2m, m∈Z Третий проехал x + 0.2n, n∈Z Пусть все затратили в это время t часов. Тогда первый проехал 20t км, второй 25t км, третий проехал 30t км. Получим систему уравнений: x+0.2k=20t, x+0.2m=25t, x+0.2n=30t.
5x+k=100t, 5x+m=125t, 5x+n=150t.
Из первого уравнения выразим t: t=(5x+k)/100 Подставим это во второе уравнение: 5x+m=125*(5x+k)/100 4*(5x+m)=5*(5x+k) 20x+4m=25x+5k 5x=4m-5k Так как m и k целые, то выражение 4m-5k тоже целое. Следовательно, и левая часть тоже целая. Если x∈[0;0.2), то 5x∈[0;1). Единственное целое значение здесь это 5x=0. Отсюда x=0. Тогда 4m-5k=0, 4m=5k Подставим t=(5x+k)/100 в третье уравнение: 5x+n=150*(5x+k)/100 n=150k/100 2n=3k.
Получим систему для m, n, k: 4m=5k, 2n=3k. Поскольку m и k взаимно простые, то m должно делиться на 5, а k на 4. Тогда пусть m=5a, где a - некоторое целое неотрицательное число. Тогда k=4*5a/5=4a. Во втором уравнении этой системы: 2n=3*4a n=6a. В итоге имеем: k=4a, m=5a, n=6a. При a=0 получим начальное положение велосипедистов, когда они только начали свой заезд. Это нам не подходит. При a=1 велосипедисты впервые встретятся одновременно. k=4, m=5, n=6. Найдем время их заезда. t=(5x+k)/100=(5*0+4)/100 часов = 1/25 часа = 60/25 минут = 2.4 минут. Самый быстрый за это время проедет 30 км/ч * 1/25 ч = 30/25 км = 1.2 км. ответ: 2.4 минут, 1.2 км.
1. Проведём CP∥AL и обозначим равные отрезки через x.
2. Треугольник PCN — равнобедренный и в нём известны все углы: ∡CPN=∡CNP=65°, ∡PCN=180°−2⋅65°=50°
Все стороны можно выразить через x: PC=CN=x, PN=34−x
3. Применим в этом треугольнике теорему синусов для определения x:
PCsin65°=PNsin50°xsin65°=34−xsin50°x⋅sin50°=(34−x)⋅sin65°x⋅(sin50°+sin65°)=34⋅sin65°x=34⋅sin65°sin50°+sin65°x≈34⋅0,910,91+0,77x≈18,42 см
4. Периметр трапеции равен 3x+34≈3⋅18,42+34≈89,26 см