Для начала, надо вычислить количество всех возможных расстановок этой пары объектов среди 6 качественных: при одном выборе первого объекта второй объект может быть выбран 5 раз(00,0-0---,0--0--,0---0-,00) при другом выборе первого объекта второй объект может быть выбран 4 раза (-00---,-0-0--,-0--0-,-0---0), и так до 1. То есть, количество возможных выборов из 6 качественных равно 1+...+(6-1). -1, потому что при одном выборе первого объекта он уже занят, значит второй в этом случае выбирается среди 6-1, а не 6.
Важно:
1+2+...+n=n(n+1)/2
Значит, кол-во возможных выборов из качественных - 15=(6-1)((6-1)+1)/2.
Так же можно вычислить кол-во возможных выборов среди всех (тоже с учётом -1): (10-1)((10-1)+1)/2=45. Значит, кол-во выбора ХОТЯ БЫ одного некачественного - 45-15=30.
Вероятность:
30/45=2/3=0,(6)=66,(6)%
ответ: 66,(6)%
Пошаговое объяснение:Если не правильно извини.Я просто скопировала задачку и нашла в интернете
1) ×8,43 2)54,29×1000= 54290
5,7
+ 5901
4215
48,051
3)37,8:100=0,378 4) 8⊥ 32 = 0,25
0_
80
64_
160
160
0
5)3,22:2,8= 32,2⊥28 =1,15
28
42
28
140
140
0
6) 15:0,75= 1500:75=20
в 6,2,3 можно устно посчитать