Cos 2x можно выразить только через косинус, или только через синус, или через обе функции. cos 2x = 2cos^2 x - 1 = 1 - 2sin^2 x = cos^2 x - sin^2 x Нас интересует - через синус. 3 - 6sin^2 x - 5sin x + 1 = 0 Умножаем все на -1 6sin^2 x + 5sin x - 4 = 0 Квадратное уравнение относительно синуса D = 5^2 - 4*6(-4) = 25 + 96 = 121 = 11^2 sin x = (-5 - 11)/12 = -16/12 < -1 - не подходит sin x = (-5 + 11)/12 = 6/12 = 1/2 x = pi/6 + 2pi*k x = 5pi/6 + 2pi*k
36-x=20 x=36-20 x=16 ответ:16 Чтобы решить линейное уравнение, нужно с допустимых преобразований оставить неизвестную величину в одной стороне от знака равенства, а известные величины отправить в другую сторону. Сделать это можно с прибавления одного и того же числа к обеим частям уравнения, вычитания одного и того же числа из обеих частей уравнения, умножения и\или деления обеих частей уравнения на одно и то же число, неравное нулю. 36-x=20 x=36-20 x=16 ответ:16
cos 2x = 2cos^2 x - 1 = 1 - 2sin^2 x = cos^2 x - sin^2 x
Нас интересует - через синус.
3 - 6sin^2 x - 5sin x + 1 = 0
Умножаем все на -1
6sin^2 x + 5sin x - 4 = 0
Квадратное уравнение относительно синуса
D = 5^2 - 4*6(-4) = 25 + 96 = 121 = 11^2
sin x = (-5 - 11)/12 = -16/12 < -1 - не подходит
sin x = (-5 + 11)/12 = 6/12 = 1/2
x = pi/6 + 2pi*k
x = 5pi/6 + 2pi*k
Отрезку [Pi; 5pi/2] принадлежит корень:
x1 = pi/6 + 2pi = 13pi/6