Предположим, что . Тогда и
. Проверим последнее утверждение.
Данное произведение — это произведение трёх последовательных чисел, значит, один из множителей обязательно делится на 3. Так как p простое и больше 3, p-1 и p+1 чётны. Докажем, что произведение p-1 = 2k и p+1 = 2k+2 (k ∈ N) делится на 8:
. Оно, очевидно, делится на 4. Также оно делится ещё на 2, так как одно из чисел k и k+1 обязательно чётное.
.
Однако из этого не обязательно следует, что и . Но p > 3 и p — простое, значит, p не содержит множителей числа 24, то есть на 24 может делиться только
, что и требовалось доказать.
А) f(x)=4x-5 - возрастает на всей своей области определения (-∞;+∞)
Б) Находим интервалы возрастания и убывания. Первая производная.
f'(x) = -0.5
Находим нули функции. Для этого приравниваем производную к нулю
0.5 ≠ 0
Для данного уравнения корней нет.
в)
(-∞ ;0) (0; +∞)
f'(x) > 0 f'(x) > 0
функция возрастает функция возрастает
г)
(-∞ ;0) (0; +∞)
f'(x) > 0 f'(x) > 0
функция возрастает функция возрастает