Запиши уравнение к задаче, начало решения которой выглядит так:
1-й кабинет
Было стульев: x
Осталось стульев: x−10
2-й кабинет
Было стульев: 2x
Осталось стульев : 2x−29
Известно, что число стульев, оставшихся в кабинетах, было одинаковым.
Определи число стульев, которые были в 1-м кабинете.
ответ (записывай без промежутков, начиная с выражения в 1-м столбике; для переменной используй латинскую раскладку):
Решение такое наверное:
7/15 - линейка
тогда 8/15 клетка
3/4 - фиолетовые
тогда 1/4 - зеленые
Доли тетрадей от общего количества:
7/15 * 3/4 = 7/20 - фиолетовые в линейку
7/15 * 1/4 = 7/60 - зеленые в линейку
8/15 * 3/4 = 2/5 - фиолетовые в клетку
8/15 * 1/4 = 2/15 - зеленые в клетку
Приводим все к одному знаменателю, чтобы узнать каких было сколько в штуках:
7/20 = 21/60 - фиол в лин
7/60 = 7/60 - зел в лин
2/5 = 24/60 - фиол в кл
2/15 = 8/60 - зел в кл
Всего 21/60+7/60+24/60+8/60 = 60/60 - все сходится.
Всего было 60 тетрадей. Числитель показывает сколько было каких (в штуках).
ответ: доля фиолетовых в линейку от всех = 7/20. Количество зеленых в линейку было 7 штук.