Критические точки - это точки, где производная равна нулю. f'(x)=((3-x^2)/(x-2))'=((3-x^2)'*(x-2)-(3-x^2)*(x-2)')/(x-2)^2=((-2x)*(x-2)-(3-x^2)*1)/(x-2)^2=(((-2x^2)+4x)-(3-x^2))/(x-2)^2=((-2x^2)+4x-3+x^2)/(x-2)^2=((-x^2)+4x-3))/(x-2)^2 Приравниваем к нулю: ((-x^2)+4x-3))/(x-2)^2=0 (-x^2)+4x-3=0 (Знаменатель отбрасывается, т.к. не может быть равен 0, получается элементарное квадратное уравнение) a=-1; b=4; c=-3; D=(b^2)-4*a*c=16-4*(-1)*(-3)=4 x=(-b±√D)/2a x1=(-4+2)/2*(-1)=(-2)/(-2)=1 x2=(-4-2)/2*(-1)=(-6)/(-2)=3 ответ: 1; 3
Пусть х - первое число, тогда 2х - второе и (8-х-2х) =(8-3х) -третье число составим функцию суммы кубов первого и второго слагаемого с третьим слагаемым умноженным на 9. у(х) = х³ +(2х)³ + 9(8-3х) у(х) = 9х³-27х +72 найдем производную у'(х) = (9х³-27х +72)' = 27х²-27 у'(x) =0 ⇒ 27x²-27=0 ⇒ 27(x²-1)=0 ⇒x² =0 ⇒ x= 1 и x= -1( не подходит) - + 1 у'(1) - точка минимума
значит при х=1 у(х) - принимает наименьшее значение у(х) = 9*1-27*1 +72 = 54 - наименьшее значение суммы кубов первого и второго слагаемого с третьим слагаемым умноженным на 9
f'(x)=((3-x^2)/(x-2))'=((3-x^2)'*(x-2)-(3-x^2)*(x-2)')/(x-2)^2=((-2x)*(x-2)-(3-x^2)*1)/(x-2)^2=(((-2x^2)+4x)-(3-x^2))/(x-2)^2=((-2x^2)+4x-3+x^2)/(x-2)^2=((-x^2)+4x-3))/(x-2)^2
Приравниваем к нулю:
((-x^2)+4x-3))/(x-2)^2=0
(-x^2)+4x-3=0 (Знаменатель отбрасывается, т.к. не может быть равен 0, получается элементарное квадратное уравнение)
a=-1; b=4; c=-3;
D=(b^2)-4*a*c=16-4*(-1)*(-3)=4
x=(-b±√D)/2a
x1=(-4+2)/2*(-1)=(-2)/(-2)=1
x2=(-4-2)/2*(-1)=(-6)/(-2)=3
ответ: 1; 3