Так как плот не имеет собственной скорости, его скорость равна скорости течения, то есть Vп = Vт = 2 км/ч. Пусть плот проплыл путь равный 24 км за t время, тогда t=24/2=12 часов. Яхта же вышла на час позже, следовательно, весь путь она проделала за t-1=12-1=11 часов. Нам известно, что весь путь от пункта А до пункта В составляет 120 км, а яхта проделала этот путь туда и обратно, причем, туда она шла - по течению, а обратно - против течения, следовательно, с разными скоростями. Пусть скорость яхты в неподвижной воде Vс = x(км/ч), тогда скорость яхты против течения V1=x-2(км/ч), скорость яхты по течению V2=x+2(км/ч). Составим уравнение:
Пусть R — радиус шара. Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань. Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты . По известной формуле площадь такой «шапочки» равна . Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы. Обозначив количество больших граней через n, получим , то есть . Решение заканчивается проверкой того, что . Примечание. Легко видеть, что у куба шесть больших граней. Поэтому приведенная в задаче оценка числа больших граней является точной.
0,625
Пошаговое объяснение:
Раздели в столбик 5 на 8 и получишь 0,625.