1) Найти время остановки. Выключен насос - объём воды не изменяется -горизонтальный участок графика - прямая на уровне 200 м³ проходит от t₁ = 4 t₂ = 10.
Т = 10 - 4 = 6 мин - время остановки - ответ.
2) Производительность работы до остановки.
По формуле РАБОТЫ: A =P*t. В нашей задаче работа это V - объём воды. Производительность работы находим по формуле: p = ΔV/Δt = (V₂ - V₁)/(t₂ - t₁).
I этап. Составление математической модели. Пусть цена мяча х руб. Тогда у Саши было (х-50) руб., у Миши (х-60) руб. Общая сумма имеющихся денег у мальчиков: (х-50) + (х-60) Зная , что после покупки мяча, у мальчиков осталось 40 рублей, составим уравнение. х = (х-50) +(х-60) -40
II этап. Работа с математической моделью. Т.е. решение уравнения. х = х-50+х-60-40 х=2х-150 х-2х=-150 -х=-150 х=150
III этап. Оценка результата. Если 150 руб. стоил мяч , то у Саши было (150-50) =100 руб. , а у Миши (150-60) = 90 руб. , после покупки мяча у них осталось (100+90)-150 = 40 руб. ответ удовлетворяет всем условиям задачи.
Пошаговое объяснение:
Рисунок с расчётом к задаче в приложении.
ОТВЕТЫ
1) Найти время остановки. Выключен насос - объём воды не изменяется -горизонтальный участок графика - прямая на уровне 200 м³ проходит от t₁ = 4 t₂ = 10.
Т = 10 - 4 = 6 мин - время остановки - ответ.
2) Производительность работы до остановки.
По формуле РАБОТЫ: A =P*t. В нашей задаче работа это V - объём воды. Производительность работы находим по формуле: p = ΔV/Δt = (V₂ - V₁)/(t₂ - t₁).
р1 = (200 - 0) : (4-0) = 200/4 = 50 м³/мин = р1 - до остановки - ответ.
3) Производительность после остановки.
р2 = (500-200)/(14 - 10) = 300/4 = 75 м³/мин = р3 - после остановки - ответ.ₙ