Відповідь:
9900|45
90 220
90
90
0
Пошаговое объяснение:
Доказать тавтологию - значит показать, что при всех истинностных значениях булевых переменных логическое выражение будет принимать только значение ИСТИНА.
Для первого логического выражения составляем таблицу (F - ЛОЖЬ, T - ИСТИНА):
![\left[\begin{array}{cccc}A&B&B\to A&A\to(B\to A)\\F&F&T&T\\F&T&F&T\\T&F&T&T\\T&T&T&T\end{array}\right]](/tpl/images/1511/7968/07c66.png)
Видно, что последний столбец, соответствующий заданному логическому выражению, состоит только из значений ИСТИНА при любом наборе булевых переменных.
Для второго логического выражения также составляем таблицу:
![\left[\begin{array}{ccccccccccc}A&B&C&A\to B&A\to C&(A\to B)\to (A\to C)&B\to C& A \to (B\to C)&Func\\F&F&F&T&T&T&T&T&T\\F&F&T&T&T&T&T&T&T\\F&T&F&T&T&T&F&T&T\\F&T&T&T&T&T&T&T&T\\T&F&F&F&F&T&T&T&T\\T&F&T&F&T&T&T&T&T\\T&T&F&T&F&F&F&F&T\\T&T&T&T&T&T&T&T&T\end{array}\right]](/tpl/images/1511/7968/ca9d4.png)
Видно, что последний столбец, соответствующий заданному логическому выражению, состоит только из значений ИСТИНА при любом наборе булевых переменных.
Таблица для третьего логического выражения:
![\left[\begin{array}{ccccccccccc}A&B&A\to B&\lnot A\to B&(\lnot A\to B)\to B&(A\to B)\to ((\lnot A\to B)\to B) \\F&F&T&F&T&T\\F&T&T&T&T&T\\T&F&F&T&F&T\\T&T&T&T&T&T\end{array}\right]](/tpl/images/1511/7968/0d62d.png)
Видно, что последний столбец, соответствующий заданному логическому выражению, состоит только из значений ИСТИНА при любом наборе булевых переменных.
То, что решается через характеристическое уравнение - это общее решение. Оно всегда будет независимо от правой части диффура.
По сути, нужно найти так называемое частное решение, и тогда решением для этого диффура будет сумма общего и частного решений.
Частное решение подбирается, исходя из правой части. В данном случае, правая часть есть многочлен второго порядка. Поэтому частное решение будет также иметь вид многочлена, причем многочлена второго порядка:
(
- частное решение, A, B и C - константы, которые нужно подобрать). Теперь необходимо подставить это решение вместо y в данном диффуре, и найти константы.
(второго порядка потому, что многочлена первого порядка может не хватать, а многочлен не ниже третьего порядка избыточен, можешь попробовать подставить многочлен третьего порядка, но при нахождении коэффициентов он занулится)
UPD: ошибся в выборе многочена. Нужно использовать многочлен третьего порядка:
(необходимо, чтобы после подстановки
в диффур в левой части получился многочлен не ниже порядка многочлена в правой части)
480:24=20.
480 | 24
48 20
0
500:25=20
500 | 25
50 20
0
60: 12=5
60 | 12
60 5
0
800:16=50
800 | 16
80 50
0
264:12*35=770
264 | 12 22
24 22 35
24 110
24 66
0 770
396*25:45=220
396 9900 | 45
25 90 220
1980 90
792 90
9900 0