1) Если окружность проходит через точки А(2,0) ,В(5,0), то её центр лежит на прямой х = (2+5)/2 = 7/2 = 3,5. А так как окружность касается оси Оу, то радиус R равен 3,5. Координату уо центра по оси Оу определяем как высоту в равнобедренном треугольнике с боковыми сторонами R и основанием 5-2 = 3. уо = √(3,5²-1,5²) = √((3,5-1,5)(3,5+1,5) = √(2*5) = √10. Получаем уравнение окружности (х-3,5)²+(у-√10)² = 3,5².
2) Параболы у=-2х^2-х-6 и у=х^2-2 не пересекаются. Первая ветвями вниз имеет вершину в точке: Хо = -в/2а = 1/(-2*2) = -1/4, Уо = -2*1/16+(1/4)-6 = -5,875. Вторая ветвями вверх имеет вершину Уо = -2.
3) Решаем систему из двух уравнений подстановки: ух=2 , у = 2/х, х^2+(2/х)^2=4. x^4-4x^2+4 = 0 вводим замену переменной х² = а. а²-4а+4 = 0 или (а-2)² = 0. Отсюда имеем один корень: а = 2 Обратная замена даёт 2 точки пересечения: х = +-√2, у = +-2/√2 = +-√2. Координаты точек пересечения: (√2; √2) и (-√2; -√2).
Спортсмен, занявший 1 место, получил 240 000 р.
Спортсмен, занявший 2 место, получил 120 000 р.
Спортсмен, занявший 3 место, получил 60 000 р.
Пошаговое объяснение:
Пусть (4х) рублей получил спортсмен, занявший 1 место
(2х) рублей получил спортсмен, занявший 2 место
(х) рублей получил спортсмен, занявший 3 место
4х +2х + х = 420000
7х = 420000
х= 60000
60000 р. получил спортсмен, занявший 3 место
2*60000= 120000 р. получил спортсмен, занявший 2 место
4*60000= 240000 р. получил спортсмен, занявший 1 место