Вычитание рациональных чисел заменяется сложением: к уменьшаемому прибавляется число, противоположное вычитаемому. То есть,a−b=a+(−b).
Вычитание рациональных чисел зависит от знаков чисел уменьшаемого и вычитаемого. Правило. Чтобы из одного числа вычесть другое, достаточно к уменьшаемому прибавить число, противоположное вычитаемому.Например: -102 — (-80) = -102 + 80 = -22. Правило. Если уменьшаемое — отрицательное число, а вычитаемое — положительное число, то нужно сложить модули уменьшаемого и вычитаемого и перед полученным результатом поставить знак «-». Например: -839 — 71 = — (|-839|+|-71|) = — (839+71) = -910.
Правило. Если уменьшаемое — положительное число н вычитаемое — положительное число, то нужно найти разность модулей уменьшаемого и вычитаемого и перед полученным результатом поставить знак «-», если модуль уменьшаемого меньше модуля вычитаемого. Если модуль уменьшаемого равен модулю вычитаемого, то разность равна нулю.Примеры. 0,165 — 0,015 = 0,15 т. к. |0,1б5| > |0,0151 1 307 — 1 307 = 0 т. к. |1 307| = |1 307|
Пошаговое объяснение:
Для построения графика прямой линии достаточно определить координаты двух точек.
Эти точки можно взять с определения точек пересечения с осями координат.
1)3х+у=6
х=0 у=(6-3х)/1=(6-3*0)/1=6/1=6
у=0 х=(6-1у)/3=(6-1*0)/3=6/3=2
Получили координаты точек А(0;6) и В(2;0).
Через эти точки проводится прямая, которая и является графиком уравнения 3х+у=6
2) -3х+2у=4
х = 0 у = (4+3х)/2 = (4+3*0)/2=4/2=2
у = 0 х =(4-2у)/-3=(4-2*0)/-3=4/-3=-1 1/3
Получили координаты точек А(0;2) и В(-1 1/3;0).
Через эти точки проводится прямая, которая и является графиком уравнения -3х+2у=4
и,т,д,