sin2x + cos2x = 1
tgx = sinxcosxctgx = cosxsinxtgx ctgx = 1
tg2x + 1 = 1cos2xctg2x + 1 = 1sin2xsin2x = 2sinx cosx
sin2x = 2tgx = 2ctgx = 21 + tg2x1 + ctg2xtgx + ctgxcos2x = cos2x - sin2x = 2cos2x - 1 = 1 - 2sin2x
cos2x = 1 - tg2x = ctg2x - 1 = ctgx - tgx1 + tg2xctg2x + 1ctgx + tgxtg2x = 2tgx = 2ctgx = 21 - tg2xctg2x - 1ctgx - tgxctg2x = ctg2x - 1 = ctgx - tgx2ctgx2Формулы тройного аргументаsin3x = 3sinx - 4sin3x
cos3x = 4cos3x - 3cosx
sin(α + β) = sinα cosβ + cosα sinβ
cos(α + β) = cosα cosβ - sinα sinβ
sin(α - β) = sinα cosβ - cosα sinβ
cos(α - β) = cosα cosβ + sinα sinβ
(sinα + cosα)2 = 1 + sin2α
tgα + tgβ = sin(α + β)cosα cosβctgα + ctgβ = sin(α + β)sinα sinβФормулы разности тригонометрических функцийsinα - sinβ = 2sinα - β ∙ cosα + β22cosα - cosβ = -2sinα + β ∙ sinα - β22(sinα - cosα)2 = 1 - sin2α
tgα - tgβ = sin(α - β)cosα cosβctgα - ctgβ = – sin(α - β)sinα sinβ
Возможно так:
количество дупел 25. и количество орехов в каждом тоже по 25. Итого: 625 орехов.
Не знаю только насколько это решение можно счмтать полным и обоснованным)):
1. 4% дупел должны быть целым числом (речь идет об увеличении или уменьшении количества дупел - оно не может быть дробным числом).
Минимальное число , от которого 4% - целое число - это число 25. От него и оттолкнемся.
2. При этом увеличивая количество дупел лучше чтобы количество орехов в каждом дупле уменьшалось на эту же цифру. А это возможно только если орехов первоначально было тоже 25.
2. Если 24 дупла а орехов 26 то получается 624 ореха. Это меньше чем 625.
3. А теперь если взять на 4 % больше дупел, то получится 26 дупел, а орехов в каждом должно быть на 1 меньше по условию, т.е. 24. Опять общая сумма 624 получается. Все сходится.
Уж не знаю как на счет полноты обоснования. Но вот так))