Допустим, что скорость течения реки равна х км/ч, тогда по течению лодка будет идти со скоростью 15 + х км/ч, а против течения со скоростью 15 - х км/ч.
По условию задачи составим уравнение:
24/(15 + х) + 2/3 = 24/(15 - х),
(102 + 2 * х)/(45 + 3 * х) = 24/(15 - х),
- 2 * х² - 144 * х + 450 = 0
Дискриминант данного уравнения равен:
(-144)² - 4 * (- 2) * 450 = 24336.
Так как х может быть только положительным числом, уравнение имеет единственное решение:
х = (144 - 156)/-4 = 3 (км/ч) - скорость течения реки.
S = 240 км
t₁ = 3 ч
t₂ = 5 ч
Найти: S₁-?; S₂-?
Скорость пассажирского поезда:
v₁ = S/t₁ = 240:3 = 80 (км/ч)
Скорость товарного поезда:
v₂ = S/t₂ = 240:5 = 48 (км/ч)
Скорость сближения поездов:
v = v₁ + v₂ = 80+48 = 128 (км/ч)
Время до встречи:
t = S/v = 240:128 = 1,875 (ч)
Расстояние, которое до встречи пассажирский поезд:
S₁ = v₁t = 80*1,875 = 150 (км)
Расстояние, которое до встречи товарный поезд:
S₂ = v₂t = 48*1,875 = 90 (км)
ответ: 150 км; 90 км.