ответ: 26; 15; 64;250;24
Пошаговое объяснение:
Делаем задания через определенные интегралы и первообразные:
1.
Подставляем в первообразную границы интегрирования:
2.
Подставляем в первообразную границы интегрирования:
3.
Подставляем в первообразную границы интегрирования:
4.
Производим ровно те же операции, что и до этого, так как требуется найти путь у параболы ветвями вверх => интеграл не будет отрицательным.
Подставляем в первообразную границы интегрирования:
5.
Находим первообразную заданной функции:
Ограничивающие прямые - те же границы интегрирования:
Связь между координатами векторов и координатами точек Определение: Вектор, конец которого совпадает с данной точкой, а начало – с началом координат, называется радиус-вектором данной точки. Теорема. Координаты любой точки равны координатам её радиус-вектора.