Задание.
Решить уравнение:
\[{\rm cos}\ x=\frac{1}{3}.\]
Решение.
Исходное уравнение относят к простым видам тригонометрических уравнений, для которых существует специальная формула, согласно которой легко найти все корни данного уравнения.
Разберемся, что значит — решить уравнение. Это значит, что нужно найти такие аргументы для заданной функции, при которых косинус будет равен \frac{1}{3}. Сразу можно обратиться к таблице значений тригонометрических функций, в частности косинуса. В таблице ищем среди значений косинуса число \frac{1}{3}. Таких чисел для косинуса нет, это значит, что косинус может быть равен этому значению от каких-либо других углов, отличных от тех, которые представлены в таблице.
Что такой угол существует, говорит тот факт, что значение \frac{1}{3} лежит между —1 и 1. Только на этом промежутке могут находиться значения функции косинус.
Для таких случаев используется специальная формула, которая использует обратную функцию к косинусу — арккосинус. Запишем решение согласно этой формуле:
x={{\rm \pm }\arccos \frac{1}{3}\ }+2\pi z, переменная z может быть любым целым числом.
ответ. x={{\rm \pm }\arccos \frac{1}{3}\ }+2\pi z, z —целое число.
Также о существовании корней любого уравнения можно узнать из графика функции. Или с тригонометрической окружности.
14
Пошаговое объяснение:
Основание по неравенству треугольника должно быть меньше суммы двух других сторон, или, что тоже самое, меньше половины периметра. В данном случае, основание должно быть не больше 29 см.
Если основание треугольника d см, то сумма двух других сторон равна (60 - d) см, а каждая сторона – (60 - d)/2 см = (30 - d/2) см. Длины боковых сторон будут выражаться целым числом сантиметров, только если d будет чётным.
Соединяя написанное выше, находим, что удовлетворяют условию тройки длин (каждой тройке отвечает один треугольник), получающиеся при d = 2 * 1, 2 * 2, ..., 2 * 14 – всего 14