М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
makarova06
makarova06
30.03.2020 09:10 •  Математика

За первый час поезд км а за второй -84 км. найди среднюю скорость поезда за это время.

👇
Ответ:
tukacheva88
tukacheva88
30.03.2020

(68+84):2=76 км/чассредняя  скорость поезда .

4,6(47 оценок)
Ответ:
yanademchenko38
yanademchenko38
30.03.2020

1) (68+84):2=76 км\ч средняя скорость

ответ: 76км\ч

4,7(82 оценок)
Открыть все ответы
Ответ:
Jamilya28
Jamilya28
30.03.2020
40:5=8(рублей)-стоит одна открытка.                                                                  Задачи:                                                                                                                 1)Одна открытка стоит 8 рублей.Купили 5 таких открыток.Сколько рублей заплатили за все открытки?(8*5=40(рублей)-заплатили).                                    2)За несколько открыток заплатили 40 рублей.Одна открытка стоит 8 рублей.Сколько таких открыток купили?(40:8=5(открыток)-купили).
4,4(24 оценок)
Ответ:
galaxykill
galaxykill
30.03.2020
Для удобства поделим левую и правую части дифференциального уравнения на x:
   y'+ \frac{y}{x} =x^2
Классификация: Дифференциальное уравнение первого порядка, разрешенной относительно производной, линейное неоднородное.

Данное дифференциальное уравнение можно решить двумя Первое это метод Бернулли, а второе - метод Лагранжа. Приведу эти вместе. 

Метод Бернулли.

Введём замену переменных y=uv, тогда по правилу дифференцирования двух функций: y'=u'v+uv'. Получим:

u'v+uv'+ \frac{uv}{x}=x^2
u'v+u(v'+\frac{v}{x})=x^2

Это решение состоит из двух этапов: 1) это принять второе слагаемое равным 0; 
v'+\frac{v}{x}=0 - дифференциальное уравнение с разделяющимися переменными.
\dfrac{dv}{v} \displaystyle=- \frac{dx}{x} ;~~~~\Rightarrow~~~~ \int \frac{dv}{v}=-\int \frac{dx}{x} ;~~~~\Rightarrow~~~~ \ln|v|=-\ln|x|
     откуда получаем v= \frac{1}{x}

Поскольку второе слагаемое равняется нулю, то подставив найденную функцию v(x) в уравнение, получим

u'\cdot \frac{1}{x} =x^2\\ \\ u'=x^3\\ \\ u=\displaystyle \int x^3dx= \frac{x^4}{4} +C

Тогда, осуществив обратную замену, общее решение данного ДУ:

      y=\bigg(\displaystyle \frac{x^4}{4} +C\bigg)\cdot \frac{1}{x} =\frac{x^3}{4} + \frac{C}{x}

Метод Лагранжа.
Найдем сначала общее решение соответствующего однородного уравнения:
  y'+ \frac{y}{x} =0 - уравнение с разделяющимися переменными.

Разделяя переменные и проинтегрировав, получим общее решение однородного уравнения:
\displaystyle \int \frac{dy}{y} =-\int \frac{dx}{x} ;~~~~~\Rightarrow~~~~~ y= \frac{C}{x}

Примем константу за функцию, т.е. C=C(x) и имеем y= \dfrac{C(x)}{x}
Тогда дифференцируя по правилу частности двух функций, получим
 y'=\dfrac{xC'(x)-C(x)}{x^2}

И тогда, подставив эти данные в исходное уравнение, получаем

\dfrac{xC'(x)-C(x)}{x^2} + \dfrac{C(x)}{x^2} =x^2\\ \\ \\ C'(x)=x^3;~~~~\Rightarrow~~~~ C(x)=\displaystyle \int x^3dx= \frac{x^4}{4}+C_1

И, вернувшись к обратной замене, получаем общее решение линейного неоднородного уравнения:
       y=\displaystyle \frac{\frac{x^4}{4}+C_1 }{x} = \frac{x^3}{4}+ \frac{C_1}{x}
4,7(37 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ