50, 57, 64.
Пошаговое объяснение:
7x7=49 нет
7x8=56 нет
7x9=63 нет
50/7=7 и остаток .13
51/7=7 и остаток .28... округляем до 3
52/7=7 и остаток .42... округляем до 4
57/7=8 и остаток .14
58/7=8 и остаток .28... округляем до 3
59/7=8 и остаток .42... округляем до 4
64/7=9 и остаток .14...
65/7=9 и остаток .28... округляем до 3
Теперь все остатки округляем
2 раза
Пошаговое объяснение:
Разделы теорииКликните, чтобы открыть меню Главная > Классическое определение вероятности Классическое определение вероятности 1. Читай полную теорию 2. Вникай в доказательства 3. Применяй на практике Факт 1. Случайное событие – это событие, которое при данных условиях может произойти, а может не произойти. Например, событие “при бросании игральной кости выпало 3 или 4 очка”. Напомним, что игральная кость – это кубик с шестью гранями, на которых написаны числа от 1 до 6. Предположим, что мы проводим некоторое испытание (эксперимент), например, бросаем игральную кость. Результатом нашего испытания может быть одно из шести событий: выпадет 1 очко, выпадет 2 очка, 3 очка, 4 очка, 5 очков или 6 очков. Такие события называются элементарными событиями (то есть это “простейшие” события, которые в совокупности образуют все множество исходов нашего эксперимента). Например, событие “при бросании игральной кости выпало 3 или 4 очка” не является элементарным, оно состоит из двух элементарных событий “при бросании игральной кости выпало 3 очка” и “при бросании игральной кости выпало 4 очка”. Если сложить вероятности всех возможных элементарных событий у некоторого эксперимента, то получится 1. Два события мы будем называть равновероятными (равновозможными), если вероятности наступления любого из них одинаковы. Например, при бросании игральной кости вероятности любого из событий: выпадет 1 очко, выпадет 2 очка, 3 очка, 4 очка, 5 очков или 6 очков, одинаковы. Или, например, при подбрасывании монеты вероятности событий “выпадет орел” и “выпадет решка” также одинаковы. Примером неравновероятных событий могут послужить два события: “при бросании игральной кости выпадет 1 очко” и “при бросании игральной кости выпадет нечетное количество очков”. Почему? В первом случае нам удовлетворяет только исход, когда кубик упадет кверху гранью, на которой написано 1; во втором случае нам подходит целых три исхода: он может выпасть кверху гранью.
Пошаговое объяснение:
Таких числа три: