3) 0x=-6 нет решения (на ноль делить нельзя)
5) -2x=0
x=0
7) x+26=5x-10
x-5x=-10-26
-4x=-36
x=9
Простые проценты: 7000 руб
Сложные проценты: 6816 руб
Пошаговое объяснение:
Решаем задачу как на простые проценты - 1-вариант, так и сложные проценты 2-вариант.
1-вариант. За один год начальная сумма уменьшается на 6%, тогда за 4 года начальная сумма уменьшится на 4·6% = 24%.
Пусть начальная сумма была равна Х руб. Тогда после уменьшения на 24% оставшийся сумма У будет равна:
У = Х - Х · (24%/100%) = Х - Х · 0,24 = Х · (1-0,24) = Х · 0,76
По известной нам оставшийся через 4 года сумме У = 5320 руб определим начальную сумму Х:
Х = У : 0,76= У : (76/100)= 5320 · 100/76 = 5320 · 25/19 руб = 7000 руб.
2-вариант. Пусть начальная сумма в некотором году была равна Х руб. Тогда после уменьшения на 6% через год оставшийся сумма У будет равна:
У = Х - Х · (6%/100%) = Х - Х · 0,06 = Х · (1-0,06) = Х · 0,94
По известной нам оставшийся через год сумме У определим начальную сумму Х:
Х = У : 0,94= У : (94/100)= У · 100/94 = У · 50/47 руб.
При этом мы должны учесть погрешность деления и округлить сумму до верхнего целого, то есть
Х = Округление вверх(У · 50/47 руб.)
Известно, что в конце 4-года оставшийся сумма У равна 5320 руб. Определим сумму Х в начале 4-года (то есть в конце 3-года):
Х = Округление вверх(5320 · 50/47 руб.) ≈ Округление вверх(5659,57 руб.) = 5660 руб.
Определим сумму Х в начале 3-года (то есть в конце 2-года):
Х = Округление вверх(5660· 50/47 руб.) ≈ Округление вверх(6021,27 руб.) = 6022 руб.
Определим сумму Х в начале 2-года (то есть в конце 1-года):
Х = Округление вверх(6022· 50/47 руб.) ≈ Округление вверх(6406,38 руб.) = 6407 руб.
Определим сумму Х в начале года (то есть начальная сумма):
Х = Округление вверх(6407· 50/47 руб.) ≈ Округление вверх(6815,96 руб.) = 6816 руб.
1) 2^8+4^5-8^2=2^8+(2^2)^5-(2^3)^2=2^8+2^10-2^6=2^6*(2^2+2^4-1)=2^6*(4+16-1)=2^6*19=2^5*(2*19)=2^5*38 это выражение делится на 38
(2^5*38)/38=2^5=32 что требовалось доказать
2) 3^11+9^6+27^3=3^11+(3^2)^6+(3^3)^3=3^11+3^12+3^9=3^9*(3^2+3^3+1)=3^9*(9+27+1)=3^9*37=3^8*(3*37)=3^8*111 это выражение делится на 111
(3^8*111)/111=3^8 что требовалось доказать
3) a=9^7+9^6+9^5=(3^2)^7+(3^2)^6+(3^2)^5=3^14+3^12+3^10=3^10*(3^4+3^2+1)=3^10*(81+9+1)=3^10*91.
b=3^10-3^9+3^8=3^8*(3^2-3+1)=3^8*(9-3+1)=3^8*7
(3^10*91)/(3^8*7)=3^2*91/7=9*13=117 что и требовалось доказать а делится на b
ответ:решу,
Пошаговое объяснение: