Количество вариантов разбиения 20 деталей по 10 - это число сочетаний из 20 по 10, формула для расчета С (20,10) = 20! / (10! * 10!) = 11*12*13*...*19*20 / (1*2*3...*9*10) = 184756
Подсчитаем число вариантов, удовлетворяющих условию задачи. Среди 10 деталей должно быть 8 годных и 2 бракованных. Выбрать 8 годных из 16 годных можно числом сочетаний из 16 по 8: С (16,8) = 16! / (8! * 8!) = 9*10*11*...*15*16 / (1*2*3...*7*8) = 12870 Выбрать 2 бракованных из 4 бракованных можно числом сочетаний из 4 по 2: С (4,2) = 4! / (2! * 2!) = 3*4 / (1*2) = 6 Каждому из сочетаний С (16,8) может соответствовать одно из сочетаний С (4,2), то есть условию задачи удовлетворяет С (16,8)*С (4,2).
Вероятность попадания двух бракованных деталей в выборку из 10 деталей р = С (16,8)*С (4,2) / С (20,10) = 12870*6 / 184756 = 0.4180 (=примерно 0.42)
сначала нужно провести вертикальную линию через вершину.
1) ставишь ножку циркуля в вершину и проводишь дугу.
2) дуга пересекает параболу в двух точках.
3) рисуешь по одной дуге равного радиуса с центрами в этих точках.
4) эти две дуги пересекаются в точке прямо над вершиной.
5) соединяешь вершину с этой точкой, получаешь ось оу.
теперь надо построить перпендикулярно к ней ось ох через вершину.
1) рисуешь маленькую окружность с центром в вершине.
2) получаешь две точки на оси оу.
3) рисуешь две дуги одинакового радиуса с центрами в этих точках.
4) они пересекаются в одной точке, эта точка нам и нужна.
5) соединяем вершину с этой точкой, получаешь ось ох.
всё!