ответ мы знаем что у Сони и гриши вместе 12 карандашей известно то что у сони на два карандаша больше значит к 12+2=14 получается что у неё 14 карандашей
Пошаговое объяснение:
ответ: исходное неравенство верно при любых х, если
{2-m< 0
{d< 0
{m> 2 {m> 2
{4m² - 4*(2-m)²< 0; {(2m-4+2m)(2m+4-2m)< 0
{m> 2 {m> 2
{16(m-1)< 0 {m< 1
нет таких m.
при 2-m=0 откуда m=2 имеется -4x< 0 ⇒ x> 0 ( это нам не подходит)
ответ: нет таких m.
1.
Уравнение плоскости, проходящей через некоторую точку с координатами (x₀,y₀,z₀), в общем виде записывается так:
A(x-x₀) + B(y-y₀) + C(z-z₀)= 0, где коэффициенты A,B,C - координаты вектора нормали 
Найдём вектор 
Вектор нормали
найдём из векторного произведения векторов a и M₁M₂
![\overline{n} =[\overline{a}~\times~\overline{M_1M_2}] = \begin{vmatrix} \overline i & \overline j & \overline k \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \overline i - \overline k = \{1, 0, -1\}](/tpl/images/0215/8850/4d6c7.png)
Плоскость задаётся уравнением:
(x - 2) + 0(y - 2) - (z - 1) = 0
ответ: x - z - 1 = 0
2.
Чтобы записать уравнение прямой в каноническом и параметрическом виде необходимо найти направляющий вектор этой прямой и точку, через которую эта прямая проходит
Найдём координаты точки A, которая принадлежит прямой
Пусть z = 0
Решим систему: 
Координаты точки A(-1, 1, 0)
Найдём координаты точки B, которая принадлежит прямой
Пусть z = -4
Снова решим систему: 
Координаты точки B(0, 5, -4)
Найдём направляющий вектор прямой
Запишем уравнение прямой в каноническом виде: 
И в параметрическом виде: 
7 карандашей
Пошаговое объяснение:
Составим и решим уравнение.
Допустим у Гришы x карандашей, тогда у сони x+2 карандаша
x+x+2=12;
2x+2=12;
2x=12-2;
2x=10;
x=10/2;
x=5;
5+2 = 7