Первый кран - за 25 часов, а второй - за 20 часов.
Пошаговое объяснение:
Пусть второй кран может разгрузить баржу за часов, тогда первый мог бы сделать это за часов. Тогда производительность второго крана составляет баржи в час, а первого - баржи в час.
По условию задачи первый кран работал все 15 часов, а второй присоединился к нему через 7 часов, значит, он работал часов. Поскольку за это время была разгружена вся баржа, можно составить уравнение:
1/(x+5)*15+(1/x)/8=1
15/(x+5)+8/x=1
15x+8x+40=x^2+5x
x^2-18x-40=0
x(1)=-2 - не подходит по смыслу задачи
x(2)=20 - подходит.
Значит, первый кран мог бы разгрузить баржу за 25 часов, а второй - за 20 часов.
Предложу решение, но мне кажется, есть что-то попроще, но не могу найти.
Рассуждаем так. Допустим до встречи 1 шёл со скоростью х км/ч, тогда второй шёл со скоростью (10-х) км/ч ( потому что км за 5 часов, значит их общая скорость была 10 км/ч)
За 5 часов х км, ему осталось идти (50-5х) км, тогда второму осталось идти 50 -(50-5х) = 5х (км) (т.к. после встречи им всё равно в сумме надо 50 км пройти.
их новые скорости: у первого:( х-1) (км/ч), у второго 1+(10-х) = 11-х (км/ч)
Теперь делим оставшиеся расстояния на скорости , получим время и зная, что первый пришёл раньше на 2 ч. составляем уравнение:
5х/(11-х) - (50-5х)/(х-1) = 2
5х/(11-х) - (50-5х)/ (х-1) - 2 = 0
приводим к общему знаменателю это (11-х)(х-1), и я буду писать только числитель:
5х(х-1) -(50-5х)(11-х) - 2(11-х)(х-1) = 0 ( т.к. дробь равно 0, если числитель равен 0, а знаменатель не равен 0)
5х^2-5x-550+55x+50x-5x^2-22x+22+2x^2-2x = 0
2x^2+76x-528 = 0
x^2+38x -264 = 0
D=2500
x=(-38-50)/2 -видно, что отриц. число, нам не подходит
или х= (-38+50)/2 = 6 (км/ч)
ответ: 6 км/ч