Ведем систему координат. Начало координат в точке А. Направление оси Ох совпадает с вектором AD, оси Оу совпадает с вектором АВ, оси Оz совпадает с вектором АА₁.
Координаты указанных в условии задачи точек A₁(0;0;a); E₁(a/2;a;a); C₁(a;a;a); C(a;a;0)
Уравнение окружности с центром в точке (x₀;y₀;z₀) и радиусом R имеет вид (х-x₀)²+(у-y₀)²+(z-z₀)²=R²
Подставим координаты точек в данное уравнение, получим систему четырех уравнений с четырьмя неизвестными:
(0-x₀)²+(0-y₀)²+(a-z₀)²=R²
((a/2)-x₀)²+(a-y₀)²+(a-z₀)²=R²
(a-x₀)²+(a-y₀)²+(a-z₀)²=R²
(a-x₀)²+(a-y₀)²+(0-z₀)²=R²
Вычитаем из третьего уравнения второе: (a-x₀)²-((a/2)-x₀)²=0; (a-x₀-(а/2)+х₀)(a-x₀+(а/2)-х₀) ⇒ х₀ =3а/4.
Вычитаем из третьего уравнения первое (a-x₀)²+(a-y₀)²-(0-x₀)²-(0-y₀)²=0; (a-x₀-x₀)(a-x₀+x₀)+(a-у₀-у₀)(a-у₀+у₀)=0 a-2x₀+a-2y₀=0 ⇒x₀+y₀=a y₀=a - x₀=a - (3a/4)=a/4
Вычитаем из третьего уравнения четвертое (a-z₀)²- (0-z₀)²=0; (a-z₀-z₀)(a-z₀+z₀)=0 ⇒ z₀ =а/2.
Подставим найденные координаты центра окружности в первое уравнение: (0-(3а/4))²+(0-(а/4))²+(a-(а/2))²=R²⇒ R=a·√(7/8).
1) Пусть уроков было N. Пусть Петя победил a раз, Коля b раз, Вася c раз.
Пусть Петя пропустил 1 урок, то есть был на N-1 уроке. Тогда:
Петя получил 4a + 1*(N-1-a) = N + 3a - 1 = 29 конфет.
Коля получил 4b + 1*(N-b) = N + 3b = 32 конфеты
Вася получил 4c + 1*(N-c) = N + 3c = 37 конфет
Из 1 уравнения получаем:
N + 3a = 30, N = 30 - 3a = 3(10 - a), то есть N кратно 3.
Тогда N - 3b и N - 3c тоже были бы кратны 3, но этого нет.
Значит, урок пропустил НЕ Петя.
Пусть урок пропустил Коля. Тогда получится:
Петя получил 4a + 1*(N-a) = N + 3a = 29 конфет.
Коля получил 4b + 1*(N-1-b) = N + 3b - 1 = 32 конфеты
Вася получил 4c + 1*(N-c) = N + 3c = 37 конфет
Тогда из 2 уравнения N + 3b = 33; N = 33 - 3b = 3(11 - b).
Получаем тоже самое: из 2 уравнения N кратно 3, а из 1 и 3 - нет.
Значит, урок пропустил Вася.
Петя получил 4a + 1*(N-a) = N + 3a = 29 конфет.
Коля получил 4b + 1*(N-b) = N + 3b = 32 конфеты
Вася получил 4c + 1*(N-1-c) = N + 3c - 1 = 37 конфет
Теперь из 3 уравнения: N = 38 - 3c, N на 3 не делится, все сходится.
Если написать 4 уравнение: a + b + c = N, то получаем систему:
{ N + 3a = 29
{ N + 3b = 32
{ N + 3c = 38
{ a + b + c = N
Но из этой системы получается N = 99/6 = 16,5, что невозможно.
Так что в задаче ошибка, но тем не менее
ответ: урок пропустил Вася.
2) Я не знаю, как это доказать, с геометрией у меня сложности.
3) Это намного проще, чем 1)
494 = 2*13*19 = 13*38
Это число 138.