Эндрю купил 27 одинаковых маленьких кубиков. На каждом кубике закрашены красным ровно две соседние грани. Из всех этих кубиков Эндрю сложил большой куб. Какое наибольшее число полностью красных граней может быть у этого куба? *
Пусть х и у - задуманные числа. Составим систему уравнений по условию задачи и решим её методом алгебраического сложения: х - 2у = 4 из первого числа вычли удвоенное второе х + 3у = 39 к первому числу прибавили утроенное второе
2х + у = 43 ---> у = 43 - 2х
Подставим значение у в любое уравнение системы х - 2 * (43 - 2х) = 4 х + 3 * (43 - 2х) = 39 х - 86 + 4х = 4 х + 129 - 6х = 39 5х = 4 + 86 - 5х = 39 - 129 5х = 90 - 5х = - 90 х = 90 : 5 х = - 90 : (-5) х = 18 х = 18
Подставим значение х в любое уравнение системы 18 - 2у = 4 18 + 3у = 39 2у = 18 - 4 3у = 39 - 18 2у = 14 3у = 21 у = 14 : 2 у = 21 : 3 у = 7 у = 7 ответ: (18; 7).
Пусть х и у - задуманные числа. Составим систему уравнений по условию задачи и решим её методом алгебраического сложения: х - 2у = 4 из первого числа вычли удвоенное второе х + 3у = 39 к первому числу прибавили утроенное второе
2х + у = 43 ---> у = 43 - 2х
Подставим значение у в любое уравнение системы х - 2 * (43 - 2х) = 4 х + 3 * (43 - 2х) = 39 х - 86 + 4х = 4 х + 129 - 6х = 39 5х = 4 + 86 - 5х = 39 - 129 5х = 90 - 5х = - 90 х = 90 : 5 х = - 90 : (-5) х = 18 х = 18
Подставим значение х в любое уравнение системы 18 - 2у = 4 18 + 3у = 39 2у = 18 - 4 3у = 39 - 18 2у = 14 3у = 21 у = 14 : 2 у = 21 : 3 у = 7 у = 7 ответ: (18; 7).
4