Расстояние от хорды до параллельной ей касательной есть перпендикуляр. Надо доказать, что радиус, проведенный к точке касания перпендикулярен хорде. доказывается по свойствам углов, образованных двумя параллельными и секущей к ним. Если мы соединим концы хорды с центром окружности , то получим два прямоугольных треугольника, у которых общая сторона - радиус, пересекающий хорду. Эти треугольники равны по равенству катета и гипотенузы. Следовательно точка пересечения радиуса и хорды делит хорду пополам. Далее по теореме Пифагора находим отрезок радиуса, соединяющего центр окружности и точку пересечения радиуса с хордой и вычитаем его из радиуса. Находим искомое расстояние.
ответ: 16/71
Пошаговое объяснение:
(-16/7) : (-71/7)
16/7*7/71
16*1/71
16/71