Площадь треугольника S=а•Н/2, где а - длина основания, а Н - высота. S треугольника МАВ = АВ• Н В треугольниках ВСМ и МДА основания ВС и АД равны. Если мы проведем через точку М линию, параллельную ВС и АД, то увидим, что кратчайшие расстояния от точки М до оснований ВС и АД, то есть высоты треугольников ВСМ (Нвсм) и МДА (Нмда) в сумме равны высоте треугольника МАВ (Нмав): Нвсм + Нмда = Нмав Но Sвсм = ВС• Нвсм Sмда = АВ• Нмда
Площадь треугольника S=а•Н/2, где а - длина основания, а Н - высота. S треугольника МАВ = АВ• Н В треугольниках ВСМ и МДА основания ВС и АД равны. Если мы проведем через точку М линию, параллельную ВС и АД, то увидим, что кратчайшие расстояния от точки М до оснований ВС и АД, то есть высоты треугольников ВСМ (Нвсм) и МДА (Нмда) в сумме равны высоте треугольника МАВ (Нмав): Нвсм + Нмда = Нмав Но Sвсм = ВС• Нвсм Sмда = АВ• Нмда
-18<2x+3y<1
Пошаговое объяснение: Для того, чтобы оценить выражение 2x+3y, необходимо по отдельности оценить 2х и 3у:
-12<2x<-8 (каждый член неравенства –6<х<–4 умножили на 2)
-6<3y<9 (каждый член неравенства –2<у<3 умножили на 3)
Далее просуммировав эти два неравенства мы и получим ответ:
-18<2x+3y<1