В прямоугольном параллелепипеде все грани - прямоугольники, все рёбра равны и перпендикулярны основаниям.
Формула диагонали квадрата d=a√2 ⇒
Диагональ АС основания равна 4√2
Из прямоугольного треугольника АА1С по т.Пифагора боковое ребро
АА1=√(А1С²-AC²)=√(81-32)=7 (ед. длины)
-------
Вариант решения.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Измерениями прямоугольного параллелепипеда являются длины трех ребер, исходящих из одной его вершины. Отсюда следует:
D²=a²+b²+c², где а и b- стороны основания, с - боковое ребро.
По условию а=b=4. D=9
81=16+16+c² ⇒
c²=81-32=49
c=7 - длина бокового ребра.
1) В любой треугольник можно вписать окружность.
5) Любые два равносторонних треугольника подобны.
По первому признаку подобия треугольников - любые равносторонние треугольники будут подобны, т.к. 2 угла одного треугольника равны 2-ум углам другого (по 60°)
НЕ ВЕРНЫЕ УТВЕРЖДЕНИЯ:
2) Любые два прямоугольных треугольника подобны.
НЕТ, необходимо, чтобы 2 угла были равны, по первому признаку подобия треугольников.
3) Центр описанной около треугольника окружности лежит в точке пересечения биссектрис углов треугольника.
НЕт, центр - это точка пересечения серединных перпендикуляров к сторонам треугольника
4) Площадь трапеции равна сумме оснований, умноженной на высоту.
НЕТ, площадь трапеции - это ПОЛУСУММА оснований умноженная на высоту.