М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LaputinaDaria
LaputinaDaria
09.01.2023 01:16 •  Математика

Даны координаты точки. Определи, на которой координатной оси находится данная точка. Точка P(0;−18) находится на оси

👇
Ответ:
Куска
Куска
09.01.2023

на оси абсцисс

4,4(41 оценок)
Открыть все ответы
Ответ:
lizniki82
lizniki82
09.01.2023
№1
Определяем массу  кислоты в растворе:
    m₁(H₂SO₄) = m₁(p-p)*ω₁(p-p) = 720 *0,14 = 108,8 г
Обозначим массу прилитой воды через х, тогда масса полученного раствора равна m₂(p-p)=(720 + х)
Т.к. концентрация полученного раствора равна 10% (ω₂ = 0,1), то можем записать:
  108,8
= 0,1
720 + х
108,8 = 72 + 0,1х
0,1х = 28,8
х = 288 г
ответ: 288 г воды
№2
Сплав металла можно представить себе тоже как раствор, только твердый, поэтому применимы те же формулы.
1) Находим массу железа в первоначальном сплаве:
     m₁(Fe) = m₁(сплав) * ω₁ = 36*0,85 = 30,6 кг
2) После прибавления никеля (обозначим его массу через х), масса сплава стала:
    m₂(сплав) = 36 + х
3) Так как содержание железа в новом сплаве равно ω₂ = 0,6, то можно составить уравнение:
      30,6
    = 0,6
     36 + х
  30,6 = 21,6 + 0,6х
    0,6х = 9
        х = 15
ответ: 15 кг никеля
№3
После добавления никеля масса сплава стала 15 кг. Известно, что в этом сплаве меди в 2 раза меньше, чем никеля. Без долгих вычислений можно сразу сказать, что меди в сплаве 5 кг, а никеля 10 кг.
Значит, первоначальное содержание меди в сплаве было:
 5/8 = 0,625  или 62,5%
ответ: 62,5%
4,4(84 оценок)
Ответ:
nikitaefimenko
nikitaefimenko
09.01.2023
Рассмотрим остатки при делении куба целого числа на 9. Если число n делится на 3, то n3 делится на 9, т.е. дает остаток 0 при делении на 9. Пусть n имеет остаток 1 при делении на 3, тогда n имеет вид 3k+1, где k - целое. По формуле куба суммы имеем: (3k+1)3 = 27k3 + 3*9k2 + 3*3k + 1 = 9*(3k3 + 3k2 + k) + 1. Таким образом, число (3k+1)3 дает остаток 1 при делении на 9. Аналогично рассматривается случай, когда n имеет остаток 2 при делении на 3 (в этом случае можно положить n=3k-1): (3k-1)3 = 27k3 - 3*9k2 + 3*3k - 1 = 9(3k3-3k2+k)-1. Таким образом, число (3k-1)3 дает остаток -1 (это тоже самое, что и остаток 8) при делении на 9. Итак, для остатков от деления куба целого числа на 9 имеется только 3 возможности: 0, 1, -1. Сделав перебор (очень небольшой), убеждаемся, что с трех данных остатков от деления на 9 можно получить в сумме только остатки 0, 1, 2, 3, -1, -2, -3. Таким образом, имеется бесконечное множество натуральных чисел, дающих остаток 4 или -4 при делении на 9 и не представимых в виде суммы трех кубов целых чисел. ответ а.
4,8(95 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ