Рассмотрим функцию . Тогда исходное уравнение имеет вид:
.
Заметим, что любой положительный корень уравнения однозначно определяет корень уравнения
(это верно в силу того, что уравнение
(относительно
) имеет ровно одно решение, так как показательная функция монотонно возрастает на своей области определения). Тогда переформулируем задачу.
При каких значениях параметра , уравнение
имеет ровно один положительный корень?
График представляет собой параболу с ветвями вверх.
Исследуем местоположение ее вершины.
.
Заметим, что при любом значении параметра ,
(это следует из отрицательности дискриминанта). Это говорит о том, что либо у нас вообще нет корней (вершина находится выше оси абсцисс), либо у нас таки есть корень, но он обязательно будет отрицательным.
Для того чтобы мы имели положительный корень, необходимо и достаточно потребовать следующее условие: .
Тогда имеем .
ответ: .
56-х=56-11
56-х=45
х=56-45
х=11
х+14=20+14
х+14=34
х=34-14
х=20
у-18=90-18
у-18=72
у=72+18
у=90