М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lunadiana
Lunadiana
01.02.2020 16:46 •  Математика

Правильной треугольной пирамиде SABC сторона основания AB= 9, а боковое ребро SA = 6. На рёбрах AB и SC отмечены точки K и M соответственно, причём AK:KB = SM:MC = 2:7. Плоскость содержит прямую KM и параллельна прямой SA.
а) Докажите, что плоскость α делит ребро SB в отношении 2 : 7, считая от вершины S.
б) Найдите расстояние между прямыми SA и KM.

👇
Открыть все ответы
Ответ:
kotlarovaira9
kotlarovaira9
01.02.2020

2f(x), а, значит, и функция f(x).

Пошаговое объяснение:

Мы воспользуемся следующими свойствами непрерывных функций:

(1) сумма и разность непрерывных функций — непрерывные функции;

(2) если g(x) — непрерывная функция, функция g(ax) также непрерывна.

Теперь заметим, что по условию непрерывны функции f(x) + f(2x) и f(x) + f(4x), а в силу свойства (2) вместе с функцией f(x) + f(2x) непрерывна и функция f(2x) + f(4x).

Далее, по свойству (1) непрерывна функция (f(x) + f(2x)) + (f(x) + f(4x)) – (f(2x) + f(4x)) = 2f(x), а, значит, и функция f(x).

4,6(45 оценок)
Ответ:
marijamihaylow
marijamihaylow
01.02.2020

Пошаговое объяснение:

Пусть R — радиус шара.

Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.

Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .

По известной формуле площадь такой «шапочки» равна .

Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.

Обозначив количество больших граней через n, получим , то есть .

Решение заканчивается проверкой того, что .

Примечание. Легко видеть, что у куба шесть больших граней.

Поэтому приведенная в задаче оценка числа больших граней является точной.

4,6(39 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ