М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Aresn
Aresn
06.03.2020 08:09 •  Математика

4. СРАВНИТЕ 8 дм 3 см= 3 дм 8 см 1 м … 6 дм 61 см х 7 дм 4 м 5 дм … 45 дм я не могу решить

👇
Ответ:
dashalapteva
dashalapteva
06.03.2020

Пошаговое объяснение:

8 дм 3 см > 3 дм 8 см

1 м > 6 дм

61 см < 7 дм

4 м 5 дм = 45 дм

4,7(16 оценок)
Открыть все ответы
Ответ:
sasapanskov
sasapanskov
06.03.2020

Картинка с табличками вложена. Искомые величины выделены цветом.

 

а)
Сначала находим среднее значение выборки:
Хс = (-1 + 0 + 4)/3 = 1
Среднее квадратичное отклонение:
\sqrt{\frac{(X1 - Xc)^2 +(X2 - Xc)^2 +(X3 - Xc)^2}{n}} = \\
\sqrt{\frac{(-1 - 1)^2 +(0 - 1)^2 +(4 - 1)^2}{3}} = 2,1602
Дисперсия - это средний квадрате отклонений от средней величины:
\frac{(X1 - Xc)^2 +(X2 - Xc)^2 +(X3 - Xc)^2}{n} = \\
\frac{(-1 - 1)^2 +(0 - 1)^2 +(4 - 1)^2}{3}} = 4,6667

б)
Среднее значение выборки:
Хс = (-3 + 1 + 2 + 4)/4 = 1
Среднее квадратичное отклонение:
\sqrt{\frac{(X1 - Xc)^2 +(X2 - Xc)^2 +(X3 - Xc)^2+(X4 - Xc)^2}{n}} = \\
\sqrt{\frac{(-3 - 1)^2 +(1 - 1)^2 +(2 - 1)^2 + (4 - 1)^2}{4}} = 2,5495
Дисперсия:
\frac{(X1 - Xc)^2 +(X2 - Xc)^2 +(X3 - Xc)^2+(X4 - Xc)^2}{n} = \\
\frac{(-3 - 1)^2 +(1 - 1)^2 +(2 - 1)^2 + (4 - 1)^2}{4}} = 6,5

в) смотри б)

г)
Среднее значение выборки:
Хс = (2 + 6 + 7 + 5)/4 = 5
Среднее квадратичное отклонение:
\sqrt{\frac{(X1 - Xc)^2 +(X2 - Xc)^2 +(X3 - Xc)^2+(X4 - Xc)^2}{n}} = \\
\sqrt{\frac{(2 - 5)^2 +(6 - 5)^2 +(7 - 5)^2 + (5 - 5)^2}{4}} = 1,8708
Дисперсия:
\frac{(X1 - Xc)^2 +(X2 - Xc)^2 +(X3 - Xc)^2+(X4 - Xc)^2}{n} =
\frac{(2 - 5)^2 +(6 - 5)^2 +(7 - 5)^2 + (5 - 5)^2}{4}} = 3,5


Для данных чисел вычислите среднее значение. составьте таблицу отклонений от среднего и квадратов от
4,4(43 оценок)
Ответ:
ainesk12
ainesk12
06.03.2020
1 = log(3,3)
Используя свойство логарифмов преобразуем заданное неравенство log3(X)+log3(x-1)-1<=log3(2):
log_3 \frac{x(x-1)}{3} \leq log_32.
При равных основаниях и логарифмируемые выражения равны.
х(х-1)/3 ≤ 2.
Получаем:
х² - х - 6 ≤ 0.
Квадратный многочлен разложим на множители.
Для этого приравняем его нулю и найдём корни.
х² - х - 6 = 0.
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-1)^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-(-1))/(2*1)=(5-(-1))/2=(5+1)/2=6/2=3;x_2=(-√25-(-1))/(2*1)=(-5-(-1))/2=(-5+1)/2=-4/2=-2.
Тогда х² - х - 6 = (х -3)(х+2).
Исходное неравенство можно выразить в виде произведения:
(х -3)(х+2) ≤ 0.
Меньше или равным нулю может быть каждый множитель:
(х -3) ≤ 0,   х ≤ 3.
(х+2) ≤0,    х ≤ -2   это значение отбрасываем по ОДЗ (логарифмируемое выражение не может быть отрицательным или нулём).
По этой же причине х не может быть меньше или равным 1: log3(x-1).
ответ: 1 < х ≤ 3.
4,7(40 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ